
 

Optimized Geometric Image Hashing 

Introduction 
Geometric hashing is a technique for recognizing objects by mapping their features into a 
standardized coordinate system [1][2]. 
It uses pairs of model points to define a basis, transforming other features relative to that basis. 
These transformed features are stored in a hash table for quick lookup. 
When analyzing a scene, the same transformations are applied to its features, allowing fast 
matching against the model. 
This method is robust to several changes such as position, orientation, and scale, making it 
effective for object detection. 

Project Goal 
The goal of the project is to implement optimized versions of the two key phases of geometric 
hashing: the pre-processing phase (hash table construction) and the matching phase. We will 
focus on translation, scaling, and rotation transformations, though additional transformations are 
welcome. For 2D images, these transformations exhibit O(n³) complexity, where n is the number 
of features used. Teams should focus on 2D images rather than 3D scenes. 

Example Code 
In papers [1][2] some pseudocode is provided to implement the two key operations mentioned 
above. In this GitHub repository [3] there is a Python implementation that supports the 
operations mentioned above (plus some other things that can be ignored). Moreover in this 
repository [4] we implement another simple Python implementation that can be used as 
inspiration. 

Dataset and Notes 
You may use either synthetic datasets or real images. For synthetic datasets, generate stylized 
point sets that represent objects and ensure that your models have a sufficient number of 
features (do not make N too small or it might be hard to see the speedup from optimizations) to 
effectively demonstrate performance improvements and a realistic example. If you choose to 
use real images, please use off-the-shelf feature extraction tools (such as OpenCV's SIFT, 
SURF, or ORB) and datasets so that you can concentrate on optimizing the geometric hashing 
process rather than on feature extraction. Additionally, include multiple model images to show 
that your algorithm is robust across different object representations and perspectives. 
Evaluation will focus on the performance and correctness of your optimized hashing algorithms, 



 

not on the intricacies of feature extraction or anything strictly unrelated to the performance 
modelling. Feel free also to tune things such as the voting thresholds and other parameters to 
get the best results. 

References 
[1] H. J. Wolfson and I. Rigoutsos, "Geometric hashing: an overview," in IEEE Computational 
Science and Engineering, vol. 4, no. 4, pp. 10-21, Oct.-Dec. 1997, doi: 10.1109/99.64160 
https://graphics.stanford.edu/courses/cs164-10-spring/Handouts/paper_geohash.pdf 
[2] Y. Lamdan and H. J. Wolfson, "Geometric Hashing: A General And Efficient Model-based 
Recognition Scheme," [1988 Proceedings] Second International Conference on Computer 
Vision, Tampa, FL, USA, 1988, pp. 238-249, doi: 10.1109/CCV.1988.589995. 
https://www.cs.utexas.edu/~grauman/courses/spring2007/395T/395T/papers/Lamdan88.pdf 
[3] https://github.com/ahakouz17/Geometric-Hashing-For-Protein-Interface-Recognition 
[4] https://github.com/tommasobo/GeoHashExample 


