
Performance Counters

Georg Ofenbeck
Spring 2013

#define RDTSC(cpu_c) \
ASM VOLATILE ("rdtsc" : "=a" ((cpu_c).int32.lo),"=d"((cpu_c).int32.hi))

Read Time Step Counter

“Read time step counter” instruction to read Invariant TSC

Monotonically increasing counter, wrap around > 10y

Stored in a “Machine Specific Register” (MSR)

Easily access able counter (dedicated instruction, user mode)

2

CPUID();
RDTSC(start);

/* Sum two arrays */
for(i = 0; i < num_runs; i++)
 z[i] = x[i] + y[i];

RDTSC(end);
CPUID();

#cycles = end - start

Performance Counters

All modern processors include performance counters
 Intel Pentium Pro – Intel i3/5/7
 AMD K7 and AMD AMD64
 IBM PPC970, PPC970MP, POWER4+, IBM Cell processors (incl. Sony PS3)
 MIPS: 5K, 20K, 25KF, 34K, 5KC, 74K, …..
 ARM Cortex
 ….

3

ReadCounter(start);

/* Sum two arrays */
for(i = 0; i < num_runs; i++)
 z[i] = x[i] + y[i];

ReadCounter(end);

#counted Events = end - start

Performance Counters

All modern processors include performance counters
 Intel Pentium Pro – Intel i3/5/7
 AMD K7 and AMD AMD64
 IBM PPC970, PPC970MP, POWER4+, IBM Cell processors (incl. Sony PS3)
 MIPS: 5K, 20K, 25KF, 34K, 5KC, 74K, …..
 ARM Cortex
 ….

4

ReadCounter(start);

/* Sum two arrays */
for(i = 0; i < num_runs; i++)
 z[i] = x[i] + y[i];

ReadCounter(end);

#counted Events = end - start

Types of Counters (Intel)

Fixed function counters
 Predefined events that are commonly used
 TSC, instructions retired, core clock cycles, …

General purpose performance counters
 can be programmed to follow a specific event

5Intel microarchitecture code name Sandy Bridge Pipeline Functionality

Types of Counters (Intel)

Fixed function counters
 Predefined events that are commonly used
 TSC, instructions retried, core clock cycles, …

General purpose performance counters
 can be programmed to follow a specific event

6http://images.ht4u.net/reviews/2009/intel_lynnfield_core_i5_core_i7/core_uncore_nehalem.png

Types of Counters (Intel)

Fixed function counters
 Predefined events that are commonly used
 TSC, instructions retried, core clock cycles, …

General purpose performance counters
 can be programmed to follow a specific event

Precise-event based sampling
 Trigger interrupt coupled to counter
 Allows to e.g. trace memory access

7

Evolution of Performance Counters

8

• 2 programmable Counters per Core
• 3 fixed Counters per Core
• 40 bit width

• System Wide Counting

• 8 programmable Counters per Core
• 3 fixed Counters per Core
• 2 programmable Counters for LLC Communication per Core
• 2 programmable Counters Uncore
• 1 fixed Counter Uncore
• 48 bit width

• per HW Thread Counting
• “Precise Event Based Sampling”

perfmon version 1 perfmon version 3

Accessing the Counters

Perfmon(1-3) defines how to program the counters

Counters differ between microarchitectures (and in-between)

To access directly
 Acquire root somehow (MSR access)
 Disable counter in control MSR
 Program events and behaviour you like in config MSR
 Enable counters in control and config MSR
 Check overflow MSR / read value from counter MSR

9

10

Accessing the Counters

Tool for Counters

Intel VTune
 Sampling based

Perf, papi, libpfm4
 Linux only, uncore poorly supported

Intel PCM
 Intel only, Cross OS, direct access to MSRs

11

Caveats

Generally many, many, many things that can go wrong
 Example flop counter with perf

12

Caveats

General
 Dead code elimination, “smart” compiler, Initialization
 Asynchronous calls
 Alignment
 HW prefetcher

Timing
 Frequency scaling
 per thread counters don’t capture total runtime

Flops
 Distinguishing single / double precision not necessary possible

Memory
 On desktop Intel machines not straightforward
 WB cache, prefetcher, …

13

Perfplot

Tool to ease the effort of creating performance / roofline plots

Modified Intel PCM to allow start / stop measurements

Instrument your code as depicted and link with the modified PCM

14

measurement_init(counters); //Array with Mask/Eventnr

for(r = 0; r < nr_repeats; r++){
 measurement_start();
 /* Sum two arrays */

for(i = 0; i < n; i++)
 z[i] = x[i] + y[i];
 measurement_stop();
}

measurement_end(); //Dump results to files

Perfplot

In collaboration with
 Ruedi Steinman
 Victoria Caparros Cabezas
 Daniele Spampinato

Available at https://github.com/GeorgOfenbeck/perfplot

Scala scripts to automate
 Compilation and execution in temporary directories
 Retrieving the results and collecting them for plots

Python plot scripts for
 Performance plots
 Roofline plots

15

https://github.com/GeorgOfenbeck/perfplot

	Performance Counters
	Read Time Step Counter
	Performance Counters
	Performance Counters
	Types of Counters (Intel)
	Types of Counters (Intel)
	Types of Counters (Intel)
	Evolution of Performance Counters
	Accessing the Counters
	Accessing the Counters
	Tool for Counters
	Caveats
	Caveats
	Perfplot
	Perfplot

