Performance Counters

Georg Ofenbeck
Spring 2013

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Read Time Step Counter

CPUID();
RDTSC(start); ‘\

/* Sum two arrays */
for(i = ©0; i < num_runs; i++) > #cycles:end-start
z[1] = x[1i] + y[i];

RDTSC(end); ,/
CPUID();

“Read time step counter” instruction to read Invariant TSC
Monotonically increasing counter, wrap around > 10y
Stored in a “Machine Specific Register” (MSR)

Easily access able counter (dedicated instruction, user mode)

Performance Counters

ReadCounter(start); ™

/* Sum two arrays */
for(i = @; 1 < num_runs; i++) > #counted Events = end - start
z[1] = x[1] + y[i];

ReadCounter(end); J

All modern processors include performance counters
= Intel Pentium Pro — Intel i3/5/7
= AMD K7 and AMD AMDG64
= |BM PPC970, PPC970MP, POWER4+, IBM Cell processors (incl. Sony PS3)
= MIPS: 5K, 20K, 25KF, 34K, 5KC, 74K,
" ARM Cortex

Performance Counters

ReadCounter(start); ™

/* Sum two arrays */
for(i = @; 1 < num_runs; i++) > #counted Events = end - start
z[1] = x[1] + y[i];

ReadCounter(end); J

All modern processors include performance counters
= Intel Pentium Pro — Intel i3/5/7
= AMD K7 and AMD AMDG64
= |BM PPC970, PPC970MP, POWER4+, IBM Cell processors (incl. Sony PS3)
= MIPS: 5K, 20K, 25KF, 34K, 5KC, 74K,
" ARM Cortex

Types of Counters (Intel)

Fixed function counters

= Predefined events that are commonly used
= TSC, instructions retired, core clock cycles, ...

General purpose performance counters
= can be programmed to follow a specific event

load || Store] Reorder i

Buffers Buffers [Buffers 5

P> | 32K L1 Instruction Cache | Pre-decode | Instr Queue
Decoders

| Branch Predictor \

1.5K uOP Cache

Allocate/Rename/Retire

In-order

== 256K L2 Cache (Unified)

Line Fill
Buffers

H

out-of-order

\ Scheduler |
[Port0 | | Port1 | |[Port5 | [Port2 | |Port3 | | Port4 |
ALU | ALU | ALU Load Load [STD |
V-Mul V-Add MP_| StAddr || StAddr
V-Shuffld V-Shufflé | 256- FP Shuf ¢ ¢
Fdiv 256- FP Add | | 256- FP Bool

256- FP MUL 256- FP Blend

256- FP Blend 1 Memory Control \

‘ 48 bytes/cycle

32K L1 Data Cache

Intel microarchitecture code name Sandy Bridge Pipeline Functionality

Types of Counters (Intel)

Fixed function counters
= Predefined events that are commonly used
= TSC, instructions retried, core clock cycles, ...

General purpose performance counters
= can be programmed to follow a specific event

Core

Level 3 Cache

Power Uncore

I;I

Clock

Intel ”f
QPI DRAM FizY)

Types of Counters (Intel)

Fixed function counters
= Predefined events that are commonly used
= TSC, instructions retried, core clock cycles, ...

General purpose performance counters
= can be programmed to follow a specific event

Precise-event based sampling
= Trigger interrupt coupled to counter
= Allows to e.qg. trace memory access

Evolution of Performance Counters

Willamette =——sMorthwood —=ePrescott — Tejas —+hehalem Released - Canceled - Future - Microarchitecture name
L L. cedarmil
NetBurst Prescott-2M —s Cedar Mill
Smithfield —Presler
- - - Core
Coppermine == Tualatin —sBanias Dothan Yonah AN |0mne « Wolfdale Sandy Bridge Haswell Skylake
P& ‘ Kentsfield — Yorkfield Bridge —=Ivy Bridge Haswell —= Broadwell — Skylake — Skymont
| 180 nm 130 nm 1 a0 nm 1 85 nm | 45nm | 32 nm 1 Z2 nm 1 14 nm 1 i0nm |
Atom
Silverthome —eLincroft
Diamondville —ePineview —sCedarview
perfmon version 1 perfmon version 3

2 programmable Counters per Core 8 programmable Counters per Core

3 fixed Counters per Core 3 fixed Counters per Core

40 bit width 2 programmable Counters for LLC Communication per Core
2 programmable Counters Uncore

System Wide Counting 1 fixed Counter Uncore
48 bit width

per HW Thread Counting
“Precise Event Based Sampling”

Accessing the Counters

Perfmon(1-3) defines how to program the counters
Counters differ between microarchitectures (and in-between)

To access directly
= Acquire root somehow (MSR access)
= Disable counter in control MSR
= Program events and behaviour you like in config MSR
= Enable counters in control and config MSR
= Check overflow MSR / read value from counter MSR

Accessing the Counters

63 3534333231 87 65 43 210

i

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTRO enable
PMCY_EN (if PMCT7 present)
PMCE_EN (if PMCE present)
PMC5_EN (if PMC5 present)
PMC4_EN (if PMC4 present)
PMC3_EN

PMC2_EN
PMC1_EN
PMCO_EN

[| Reserved Valid if CPUID.OAH:EAX[15:8] = 8, else reserved.

Figure 18-26. IA32_PERF_GLOBAL _CTRL MSR in Intel® Microarchitecture Code Name Sandy Bridge

63 31 24232221201918 171615 8 7 0
Counter Mask| /€ | \|P || O|5 | Unit Mask (UMASK)| Event Sl
(CMASK) |y [N|y|Tlc||s|g] ™ Mas () vent Select

INV—Invert counter mask ——
EN—Enable counters
ANY—Any Thread —
INT—APIC interrupt enable
PC—Pin control
E—Edge detect
OS—Operating system mode———— I:l Reserved
USR—User Mode

Figure 18-6. Layout of IA32_PERFEVTSELX MSRs Supporting Architectural Performance Monitoring Version 3

Tool for Counters

Intel VTune
= Sampling based

Perf, papi, libpfm4
= Linux only, uncore poorly supported

Intel PCM
= Intel only, Cross OS, direct access to MSRs

Caveats

Generally many, many, many things that can go wrong
= Example flop counter with perf

Sum Reduction

REPS=30- .005 Threshold on 1st derivative

100000000
10000000 198
1000000 — T
100000 10K
o 10000 —— 100K
Q
3 1000 — M
12M
100
10
1
10 100 1000 10000 100000 1000000

12
RUNS

Caveats

General
= Dead code elimination, “smart” compiler, Initialization

= Asynchronous calls
= Alignment
= HW prefetcher

Timing
= Frequency scaling
= per thread counters don’t capture total runtime

Flops
= Dijstinguishing single / double precision not necessary possible

Memory
® On desktop Intel machines not straightforward

= WB cache, prefetcher, ...

Perfplot

Tool to ease the effort of creating performance / roofline plots

Modified Intel PCM to allow start / stop measurements

measurement_init(counters); //Array with Mask/Eventnr

for(r =

}

@; r < nr_repeats; r++){

measurement_start();

/* Sum two arrays */

for(i = 8; 1 < nj i++)
z[i] = x[i] + y[i];

measurement_stop();

measurement_end(); //Dump results to files

Instrument your code as depicted and link with the modified PCM

Perfplot

In collaboration with
= Ruedi Steinman
= Victoria Caparros Cabezas
= Daniele Spampinato

Available at https://github.com/GeorgOfenbeck/perfplot

Scala scripts to automate
= Compilation and execution in temporary directories
= Retrieving the results and collecting them for plots

Python plot scripts for
= Performance plots
= Roofline plots

15

https://github.com/GeorgOfenbeck/perfplot

	Performance Counters
	Read Time Step Counter
	Performance Counters
	Performance Counters
	Types of Counters (Intel)
	Types of Counters (Intel)
	Types of Counters (Intel)
	Evolution of Performance Counters
	Accessing the Counters
	Accessing the Counters
	Tool for Counters
	Caveats
	Caveats
	Perfplot
	Perfplot

