Advanced Systems Lab

Spring 2024
Lecture: Discrete Fourier transform, fast Fourier transforms

Instructor: Markus Püschel
TA: Tommaso Pegolotti, several more

EMH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

1

Linear Transforms

Overview: Transforms and algorithms
Discrete Fourier transform
Fast Fourier transform algorithms (FFTs)

After that:

- Optimized implementation and autotuning (FFTW)
- Automatic program synthesis (Spiral)

FFT References

FFTs:

- Cooley and Tukey, An algorithm for the machine calculation of complex Fourier series," Math. of Computation, vol. 19, pp. 297-301, 1965
- Nussbaumer, Fast Fourier Transform and Convolution Algorithms, 2nd ed., Springer, 1982
- van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, 1992
- Tolimieri, An, Lu, Algorithms for Discrete Fourier Transforms and Convolution, Springer, 2nd edition, 1997
- Franchetti, Püschel, Voronenko, Chellappa and Moura, Discrete Fourier Transform on Multicore, IEEE Signal Processing Magazine, special issue on "Signal Processing on Platforms with Multiple Cores", Vol. 26, No. 6, pp. 90-102, 2009

Complexity: Bürgisser, Clausen, Shokrollahi, Algebraic Complexity Theory, Springer, 1997
History: Heideman, Johnson, Burrus: Gauss and the History of the Fast Fourier Transform, Arch. Hist. Sc. 34(3) 1985

3

Linear Transforms

Very important class of functions: signal processing, communication, scientific computing, ...

Mathematically:

Change of basis $=$ Multiplication by a fixed (entries are constants) matrix T

$$
\begin{aligned}
& \left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n-1}
\end{array}\right)=y=T x \quad x=\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n-1}
\end{array}\right) \\
& \text { Output } \quad T=\left[t_{k, \ell}\right]_{0 \leq k, \ell<n} \\
& \text { Input }
\end{aligned}
$$

Equivalent definition: Summation form

$$
y_{k}=\sum_{\ell=0}^{n-1} t_{k, \ell} x_{\ell}, \quad 0 \leq k<n
$$

Operations in linear transforms: additions and multiplications by constants

Linear Transforms

Compute: $\mathrm{y}=\mathrm{Tx} \quad \mathrm{x}$: input vector, y : output vector, T : fixed transform matrix
Example: Discrete Fourier transform (DFT)

1. form (standard in signal processing):

$$
\begin{aligned}
\text { given: } x_{0}, \ldots, x_{n-1} \\
\text { compute: } \quad \begin{aligned}
y_{k} & =\sum_{\ell=0}^{n-1} e^{-2 k \ell \pi i / n} x_{\ell}, \quad k=0, \ldots, n-1 \\
& =\sum_{\ell=0}^{n-1} \omega_{n}^{k \ell} x_{\ell}, \quad k=0, \ldots, n-1, \quad \omega_{n}=e^{-2 \pi i / n}
\end{aligned} . \quad \text { primitive nth root of } 1
\end{aligned}
$$

2. form (we will use):
given: $\left(x_{0}, \ldots, x_{n-1}\right)^{T}$
compute: $\quad y=\mathbf{D F T}_{n} \cdot x, \quad \mathbf{D F T}_{n}=\left[\omega_{n}^{k \ell}\right]_{0 \leq k, \ell<n}$

How does the DFT_{2} matrix look?
Second row of DFT_{4} matrix?

Smallest Relevant Example: DFT, Size 2

Transform (matrix): $\quad \mathbf{D F T}_{2}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] \quad \begin{aligned} & \text { How many ops to compute } \\ & \text { the } D F T_{2} \text { of a vector? }\end{aligned}$
(the DFT_{2} of a vector?

Computation: $\quad y=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] x \quad$ or $\quad \begin{aligned} & y_{0}=x_{0}+x_{1} \\ & y_{1}=x_{0}-x_{1}\end{aligned}$

As graph (direct acyclic graph or DAG):

called a butterfly

DFT, Size 4

$\mathrm{DFT}_{4}=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i\end{array}\right]$

How many (complex) operations to compute the DFT_{4} of a (complex) vector?
$y=\mathrm{DFT}_{4} \cdot x$
12 complex adds/subs and 4 mults by i

Transforms: Examples

A few dozen transforms are relevant
Some examples

$$
\begin{aligned}
& \mathbf{D F T}_{n}=\left[e^{-2 k \ell \pi i / n}\right]_{0 \leq k, \ell<n} \\
& \operatorname{RDFT}_{n}=\left[r_{k \ell \ell}\right]_{0 \leq k, \ell<n}, \quad r_{k \ell}=\left\{\begin{array}{ll}
\cos \frac{2 \pi k \ell}{n}, & k \leq\left\lfloor\frac{n}{2}\right\rfloor \\
-\sin \frac{2 \pi k \ell}{n}, & k>\left\lfloor\frac{n}{2}\right\rfloor
\end{array} \quad\right. \text { universal tool } \\
& \text { DHT }=[\cos (2 k \ell \pi / n)+\sin (2 k \ell \pi / n)]_{0 \leq k, \ell<n} \\
& \mathbf{W H T}_{n}=\left[\begin{array}{rr}
\mathrm{WHT}_{n / 2} & \mathrm{WHT}_{n / 2} \\
\mathrm{WHT}_{n / 2} & -\mathrm{WHT}_{n / 2}
\end{array}\right], \quad \mathbf{W H T}_{2}=\mathbf{D F T}_{2} \\
& \operatorname{IMDCT}_{n}=[\cos ((2 k+1)(2 \ell+1+n) \pi / 4 n)]_{0 \leq k<2 n, 0 \leq \ell<n} \quad \text { MPEG } \\
& \text { DCT- }_{n}=[\cos (k(2 \ell+1) \pi / 2 n)]_{0 \leq k, \ell<n} \\
& \text { JPEG } \\
& \mathrm{DCT}^{2} \mathbf{3}_{n}=\mathrm{DCT}-2_{n}^{T} \quad \text { (transpose) } \\
& \text { DCT-4 } \mathbf{4}_{n}=[\cos ((2 k+1)(2 \ell+1) \pi / 4 n)]_{0 \leq k, \ell<n}
\end{aligned}
$$

Transform Algorithms

An algorithm for $\mathrm{y}=\mathrm{Tx}$ is given by a factorization

$$
T=T_{1} T_{2} \cdots T_{m}
$$

Namely, instead of $y=T x$ we can compute in steps
$t_{1}=T_{m} x$
$t_{2}=T_{m-1} t_{1}$
This reduces the op count only if:

- the T_{i} are sparse
- m is not too large

Example: Cooley-Tukey Fast Fourier Transform (FFT), size 4

$\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i\end{array}\right]$	$x=\left[\begin{array}{cccc}1 & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & 1 \\ 1 & \cdot & -1 & \cdot \\ \cdot & 1 & \cdot & -1\end{array}\right]$	$\left[\begin{array}{cccc}1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & i\end{array}\right]$	$\left[\begin{array}{cccc}1 & 1 & \cdot & \cdot \\ 1 & -1 & \cdot & \cdot \\ \cdot & \cdot & 1 & 1 \\ \cdot & \cdot & 1 & -1\end{array}\right]$	$\left[\begin{array}{cccc}1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1\end{array}\right] x$
12 adds 4 mults by i	4 adds	1 mult by i	4 adds	0 ops

9

Cooley-Tukey FFT, n = 4

Fast Fourier transform (FFT)

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]=\left[\begin{array}{rccc}
1 & . & 1 & \cdot \\
\cdot & 1 & \cdot & 1 \\
1 & \cdot & -1 & \cdot \\
\cdot & 1 & \cdot & -1
\end{array}\right]\left[\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & i
\end{array}\right]\left[\begin{array}{rrrr}
1 & 1 & \cdot & \cdot \\
1 & -1 & \cdot & \cdot \\
\cdot & \cdot & 1 & 1 \\
\cdot & \cdot & 1 & -1
\end{array}\right]\left[\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right]
$$

Representation using matrix algebra

$$
\mathbf{D F T}_{4}=\left(\mathrm{DFT}_{2} \otimes \mathrm{I}_{2}\right) \operatorname{diag}(1,1,1, i)\left(\mathrm{I}_{2} \otimes \mathbf{D F T}_{2}\right) \mathrm{L}_{2}^{4}
$$

Data flow graph (right to left)

$$
\text { at stride } 2 \quad 2 \text { DFTs of size } 2
$$

Example Recursive FFT, $\mathbf{n}=16$, radix 4

11

General Radix, Recursive Cooley-Tukey FFT
Assume $\mathrm{n}=\mathrm{km}: \quad \mathrm{DFT}_{n}=\left(\mathrm{DFT}_{k} \otimes \mathrm{I}_{m}\right){\underset{m}{m}}_{m}^{n}\left(\mathrm{I}_{k} \otimes \mathrm{DFT}_{m}\right) \stackrel{\llcorner }{k}_{L_{k}^{n}}$
permutation matrix diagonal matrix with roots of unity
3 key structures: $\quad \mathrm{I}_{k} \otimes A_{m}, A_{k} \otimes \mathrm{I}_{m}, \mathrm{~L}_{k}^{n}$
$y=\left(\mathrm{I}_{k} \otimes A_{m}\right) x$

for $i=0: k-1$
$y[i m: i m+m-1]=A^{*} x[i m: i m+m-1]$

for $i=0: m-1$
$y[i: m: i+(k-1) m]=A^{*} x[i: m: i+(k-1) m]$
$y=\mathrm{L}_{k}^{n} x \quad$ view x as $\mathrm{m} \times \mathrm{k}$ matrix:

for $i=0: k-1$
for $j=0: m-1$
$y[i m+j]=x[i+k j]$
read at stride k, write at stride 1 equivalent: read at stride 1 , write at stride m

Example FFT, $\mathbf{n}=16$ (Recursive, Radix 4)

Recursive Cooley-Tukey FFT

$\begin{aligned} \mathbf{D F T}_{k m} & =\left(\mathbf{D F T}_{k}^{\downarrow} \otimes \mathrm{I}_{m}\right) T_{m}^{k m}\left(\mathrm{I}_{k} \otimes \mathbf{D F T}_{m}\right) L_{k}^{k m} \quad \text { decimation-in-time } \\ \mathbf{D F T}_{k m} & =L_{m}^{k m}\left(\mathrm{I}_{k} \otimes \mathbf{D F T}_{m}\right) T_{m}^{k m}\left(\mathbf{D F T}_{k} \otimes \mathrm{I}_{m}\right) \quad \text { decimation-in-frequency }\end{aligned}$

For powers of two $n=2^{t}$ sufficient together with base case
$\mathbf{D F} \mathbf{T}_{2}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$

Cost:

- (complex adds, complex mults) $=\left(n \log _{2}(n), n \log _{2}(n) / 2\right)$ independent of recursion
- (real adds, real mults $) \leq\left(3 n \log _{2}(n), 2 n \log _{2}(n)\right)=5 n \log _{2}(n)$ flops depends on recursion: best is at least radix-8

Recursive vs. Iterative FFT

Recursive, radix-k Cooley-Tukey FFT

$$
\begin{aligned}
\mathbf{D F T}_{k m} & =\left(\mathbf{D F T}_{k} \otimes \mathrm{I}_{m}\right) T_{m}^{k m}\left(\mathrm{I}_{k} \otimes \mathbf{D F T}_{m}\right) L_{k}^{k m} \\
\mathbf{D F T}_{k m} & =L_{m}^{k m}\left(\mathrm{I}_{k} \otimes \mathbf{D F T}_{m}\right) T_{m}^{k m}\left(\mathbf{D F T}_{k} \otimes \mathrm{I}_{m}\right)
\end{aligned}
$$

Iterative, radix 2, decimation-in-time/decimation-in-frequency

$$
\begin{aligned}
\mathbf{D F T}_{2^{t}} & =\left(\prod_{j=1}^{t}\left(\mathrm{I}_{2^{j-1}} \otimes \mathbf{D F T}_{2} \otimes \mathrm{I}_{2^{t-j}}\right) \cdot\left(\mathrm{I}_{2^{j-1}} \otimes T_{2^{t-j}}^{2^{t-j+1}}\right)\right) \cdot R_{2^{t}} \\
\mathbf{D F T}_{2^{t}} & =R_{2^{t}} \cdot\left(\prod_{j=1}^{t}\left(\mathrm{I}_{2^{t-j}} \otimes T_{2^{j-1}}^{2^{j}}\right) \cdot\left(\mathrm{I}_{2^{t-j}} \otimes \mathbf{D F T}_{2} \otimes \mathrm{I}_{2^{j-1}}\right)\right)
\end{aligned}
$$

Recursive vs. Iterative

Iterative FFT computes in stages of butterflies =
$\log _{2}(n)$ passes through the data
Recursive FFT reduces passes through data $=$ better locality

Same computation graph but different topological sorting

Rough analogy:

MMM

DFT
Triple loop
Iterative FFT
Blocked
Recursive FFT

Iterative FFT, Radix 2

$\left(\left(I_{1} \otimes \mathrm{DFT}_{2} \otimes I_{8}\right) D_{0}^{16}\right)\left(\left(I_{2} \otimes \mathrm{DFT}_{2} \otimes I_{4}\right) D_{1}^{16}\right)\left(\left(I_{4} \otimes \mathrm{DFT}_{2} \otimes I_{2}\right) D_{2}^{16}\right)\left(\left(I_{8} \otimes \mathrm{DFT}_{2} \otimes I_{1}\right) D_{3}^{16}\right) R_{2}^{16}$

19

Pease FFT, Radix 2

$\left(L_{2}^{16}\left(I_{8} \otimes \operatorname{DFT}_{2}\right) D_{0}^{16}\right)\left(L_{2}^{16}\left(I_{8} \otimes \mathrm{DFT}_{2}\right) D_{1}^{16}\right)\left(L_{2}^{16}\left(I_{8} \otimes \mathrm{DFT}_{2}\right) D_{2}^{16}\right)\left(L_{2}^{16}\left(I_{8} \otimes \mathrm{DFT}_{2}\right) D_{3}^{16}\right) R_{2}^{16}$

Stockham FFT, Radix 2

$\left(\left(\mathrm{DFT}_{2} \otimes I_{8}\right) D_{0}^{16}\left(L_{2}^{2} \otimes I_{8}\right)\right)\left(\left(\mathrm{DFT}_{2} \otimes I_{8}\right) D_{1}^{16}\left(L_{2}^{4} \otimes I_{4}\right)\right)\left(\left(\mathrm{DFT}_{2} \otimes I_{8}\right) D_{2}^{16}\left(L_{2}^{8} \otimes I_{2}\right)\right)\left(\left(\mathrm{DFT}_{2} \otimes I_{8}\right) D_{3}^{16}\left(L_{2}^{16} \otimes I_{1}\right)\right)$

21

Six-Step FFT

$L_{4}^{16}\left(I_{4} \otimes\left(\left(\mathrm{DFT}_{2} \otimes I_{2}\right) T_{2}^{4}\left(I_{2} \otimes \mathrm{DFT}_{2}\right) L_{2}^{4}\right)\right) L_{4}^{16} T_{4}^{16}\left(I_{4} \otimes\left(\left(\mathrm{DFT}_{2} \otimes I_{2}\right) T_{2}^{4}\left(I_{2} \otimes \mathrm{DFT}_{2}\right) L_{2}^{4}\right)\right) L_{4}^{16}$

Multi-Core FFT

$\left(L_{4}^{8} \otimes I_{2}\right)\left(I_{2} \otimes\left(\left(\mathrm{DFT}_{2} \otimes I_{2}\right) T_{2}^{4}\left(I_{2} \otimes \mathrm{DFT}_{2}\right) L_{2}^{4}\right) \otimes I_{2}\right)\left(L_{2}^{8} \otimes I_{2}\right) T_{4}^{16}\left(I_{2} \otimes\left(I_{2} \otimes\left(\mathrm{DFT}_{2} \otimes I_{2}\right) T_{2}^{4}\left(I_{2} \otimes \mathrm{DFT}_{2}\right)\right) R_{2}^{8}\right)\left(L_{2}^{8} \otimes I_{2}\right)$

Transform Algorithms

```
            DFT
```



```
|
```



```
        DCT-2 2n}->\mp@subsup{P}{k/2,2m}{\top}(\mathrm{ DCT- 2 2m K
        DCT-3 }\mp@subsup{n}{n}{}->\mathrm{ DCT-2 - }\mp@subsup{n}{n}{\top
        DCT-4}n->\mp@subsup{Q}{k/2,2m}{\top}(\mp@subsup{I}{k/2}{}\otimes\mp@subsup{N}{2m}{}\mathrm{ RDFT-3 T
            DFT}\mp@subsup{n}{n}{}->(\mp@subsup{\textrm{DFT}}{k}{}\otimes\mp@subsup{\textrm{I}}{m}{})\mp@subsup{\textrm{T}}{m}{n}(\mp@subsup{\textrm{I}}{k}{}\otimes\mp@subsup{\textrm{DFT}}{m}{})\mp@subsup{\textrm{L}}{k}{n},\quadn=km\longrightarrow\mathrm{ Cooley-Tukey FFT
            DFT}\mp@subsup{n}{n}{}->\mp@subsup{P}{n}{}(\mp@subsup{\mathbf{DFT}}{k}{}\otimes\mp@subsup{\textrm{DFT}}{m}{})\mp@subsup{Q}{n}{},\quadn=km,\operatorname{gcd}(k,m)=1\mathrm{ - Prime-factor FFT
            DFT
    DCT-3}\mp@subsup{|}{n}{}->(\mp@subsup{\textrm{I}}{m}{}\oplus\mp@subsup{\textrm{J}}{m}{})\mp@subsup{\textrm{L}}{m}{n}(\textrm{DCT}-\mp@subsup{\mathbf{3}}{m}{(1/4)}\oplus\mathrm{ DCT-3
                .(F2\otimes\mp@subsup{I}{m}{})[\begin{array}{ll}{\mp@subsup{\mathbf{I}}{m}{}}&{0\oplus-\mp@subsup{J}{m-1}{*}}\\{\frac{1}{\sqrt{}{2}}(\mp@subsup{\textrm{I}}{1}{}\oplus2\mp@subsup{\mathbf{I}}{m}{\prime})}\end{array}],\quadn=2m
    DCT-4 }n->\mp@subsup{S}{n}{}\mathrm{ DCT- }\mp@subsup{2}{n}{}\mp@subsup{\mathrm{ diag }}{0\leqk<n}{}(1/(2\operatorname{cos}((2k+1)\pi/4n))
IMDCT 
```



```
    \mp@subsup{DFT}{2}{}->\stackrel{i=1}{\mp@subsup{\textrm{F}}{2}{}}
    DCT-2 2 }->\mathrm{ diag(1,1/v
    DCT-4 }\mp@subsup{2}{2}{}->\mp@subsup{J}{2}{}\mp@subsup{R}{13\pi/8}{
```


Complexity of the DFT

Measure: $L_{c}, 2 \leq c$

- Complex adds count 1
- Complex mults by a constant a with $|a|<c$ counts 1
- L_{2} is strictest, L_{∞} the loosest (and most natural)

Upper bounds:

- $n=2^{k}: \quad L_{2}\left(D F T_{n}\right) \leq 3 / 2 n \log _{2}(n) \quad$ (using Cooley-Tukey FFT)
- General $n: \quad L_{2}\left(D F T_{n}\right) \leq 8 n \log _{2}(n) \quad$ (needs Bluestein FFT)

Lower bound:

- Theorem by Morgenstern: If $c<\infty$, then $L_{c}\left(D F T_{n}\right) \geq 1 / 2 n \log _{c}(n)$
- Implies: in the measure L_{c} for $c<\infty$ the DFT is $\Theta(n \log (n))$

Lowest Known FFT Cost (Powers of 2)

A modified split-radix FFT with fewer arithmetic operations, Johnson and Frigo, IEEE Trans. Signal Processing 55(1), pp. 111-119, 2007

Number of flops ($\mathrm{n}=2^{\mathrm{k}}$):

$$
\frac{34}{9} n \log _{2}(n)-\frac{124}{27} n-2 \log _{2}(n)-\frac{2}{9}(-1)^{\log _{2}(n)} \log _{2}(n)+\frac{16}{27}(-1)^{\log _{2}(n)}+8
$$

History of FFTs

The advent of digital signal processing is often attributed to the FFT
(Cooley-Tukey 1965)
History:

- Around 1805: FFT discovered by Gauss [1] (Fourier publishes the concept of Fourier analysis in 1807!)
- 1965: Rediscovered by Cooley-Tukey

Carl-Friedrich Gauss

Contender for the greatest mathematician of all times
Some contributions: Modular arithmetic, least square analysis, normal distribution, fundamental theorem of algebra, Gauss elimination, Gauss quadrature, Gauss-Seidel, non-Euclidean geometry, ...

