

Linear Transforms

Overview: Transforms and algorithms

Discrete Fourier transform

Fast Fourier transform algorithms (FFTs)

After that:

- Optimized implementation and autotuning (FFTW)
- Automatic program synthesis (Spiral)

Linear Transforms

Very important class of functions: signal processing, communication, scientific computing, ...

Mathematically:

Change of basis = Multiplication by a fixed (entries are constants) matrix T

$$\begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{pmatrix} = y = Tx \qquad \qquad T \cdot \qquad \qquad T \cdot \qquad \qquad x = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

Output

Equivalent definition: Summation form

$$y_k = \sum_{\ell=0}^{n-1} t_{k,\ell} x_\ell, \quad 0 \le k < n$$

Operations in linear transforms: additions and multiplications by constants

DFT, Size 4

 $\mathbf{DFT}_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$

How many (complex) operations to compute the DFT₄ of a (complex) vector?

 $y = \mathbf{DFT}_4 \cdot x$

12 complex adds/subs and 4 mults by i

Recursive vs. Iterative FFT

Recursive, radix-k Cooley-Tukey FFT

$$\mathbf{DFT}_{km} = (\mathbf{DFT}_k \otimes \mathbf{I}_m) T_m^{km} (\mathbf{I}_k \otimes \mathbf{DFT}_m) L_k^{km}$$

$$\mathbf{DFT}_{km} = L_m^{km}(\mathbf{I}_k \otimes \mathbf{DFT}_m)T_m^{km}(\mathbf{DFT}_k \otimes \mathbf{I}_m)$$

Iterative, radix 2, decimation-in-time/decimation-in-frequency

$$\mathbf{DFT}_{2^{t}} = \left(\prod_{j=1}^{t} (\mathbf{I}_{2^{j-1}} \otimes \mathbf{DFT}_{2} \otimes \mathbf{I}_{2^{t-j}}) \cdot (\mathbf{I}_{2^{j-1}} \otimes T_{2^{t-j}}^{2^{t-j+1}})\right) \cdot R_{2^{t}}$$
$$\mathbf{DFT}_{2^{t}} = R_{2^{t}} \cdot \left(\prod_{j=1}^{t} (\mathbf{I}_{2^{t-j}} \otimes T_{2^{j-1}}^{2^{j}}) \cdot (\mathbf{I}_{2^{t-j}} \otimes \mathbf{DFT}_{2} \otimes \mathbf{I}_{2^{j-1}})\right)$$

lterative FFT comp log ₂ (n) passes thro	outes in stages of butterflie ough the data	; =	
Recursive FFT red	uces passes through data =		
better locality			
<i>better locality</i> Same computation	n graph but different topol	gical sorting	
better locality Same computation	n graph but different topol	ogical sorting	
better locality Same computation Rough analogy:	n graph but different topol	ogical sorting	
netter locality Same computation Rough analogy: MMM	n graph but different topol	ogical sorting	
etter locality ame computation cough analogy: MMM Triple loop	n graph but different topol DFT Iterative FFT	ogical sorting	

19

23

Lowest Known FFT Cost (Powers of 2)

A modified split-radix FFT with fewer arithmetic operations, *Johnson and Frigo, IEEE Trans. Signal Processing 55(1), pp. 111-119, 2007*

Number of flops (n = 2^k):

$$\frac{34}{9}n\log_2(n) - \frac{124}{27}n - 2\log_2(n) - \frac{2}{9}(-1)^{\log_2(n)}\log_2(n) + \frac{16}{27}(-1)^{\log_2(n)} + 8$$

