Advanced Systems Lab

Spring 2024
Lecture: Memory bound computation, sparse linear algebra, OSKI

Instructor: Markus Püschel
TA: Tommaso Pegolotti, several more

EMH
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

1

Overview

Memory bound computations
Sparse linear algebra, OSKI

Memory Bound Computation

Data movement, not computation, is the bottleneck
Typically: Computations with operational intensity $I(n)=O(1)$

operational intensity

3

Memory Bound Or Not? Depends On ...

The computer

- Memory bandwidth
- Cache size
- Peak performance

The algorithm

- Dependencies

How it is implemented

- Good/bad locality
- SIMD or not

How the measurement is done

- Cold or warm cache
- In which cache data resides
- See next slide

Example: BLAS 1, Warm Data \& Code

z = $\mathrm{x}+\mathrm{y}$ on Core i7 (Nehalem, one core, no SSE), icc 12.0 /O2 /fp:fast /Qipo

5

Sparse Linear Algebra

Sparse matrix-vector multiplication (MVM)
Sparsity/Bebop/OSKI

References:

- Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for Sparse Matrix Kernels, Int'I Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004
- Vuduc, R.; Demmel, J.W.; Yelick, K.A.; Kamil, S.; Nishtala, R.; Lee, B.; Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply, pp. 26, Supercomputing, 2002
- Sparsity/Bebop website

Sparse Linear Algebra

Very different characteristics from dense linear algebra (LAPACK etc.)
Applications:

- finite element methods
- PDE solving
- physical/chemical simulation (e.g., fluid dynamics)
- linear programming
- scheduling
- signal processing (e.g., filters)
- .

Core building block: Sparse MVM

Sparse MVM (SMVM)

$y=y+A x, A$ sparse but known (below A is square)

Typically executed many times for fixed A
What is reused (possible temporal locality)?
Upper bound on operational intensity? $\quad I(n) \leq \frac{2 K}{8(K+3 n)} \leq \frac{1}{4}$

Storage of Sparse Matrices

Standard storage is obviously inefficient: Many zeros are stored

- Unnecessary operations
- Unnecessary data movement
- Bad operational intensity

Several sparse storage formats are available
Popular for performance: Compressed sparse row (CSR) format

9

CSR

Assumptions:

- A is $m \times n$
- K nonzero entries

A as matrix

b	c		c
	a		
		b	b
		c	

A in CSR:

Storage:

- K doubles $+(K+m+1)$ ints $=\Theta(\max (K, m))$
- Typically: $\Theta(K)$

Sparse MVM Using CSR

```
y=y+Ax
    void smvm(int m, const double* values, const int* col_idx,
                const int* row_start, double* x, double* y)
{
    int i, j;
    double d;
    /* loop over m rows */
    for (i = 0; i < m; i++) {
        d = y[i]; /* scalar replacement since reused */
        /* loop over non-zero elements in row i */
        for (j = row_start[i]; j < row_start[i+1]; j++)
            d += values[j] * x[col_idx[j]];
            y[i] = d;
    }
}
```

CSR + sparse MVM: Advantages?

CSR

Advantages:

- Only nonzero values are stored
- All three arrays for A (values, col_idx, row_start) accessed consecutively in MVM (good spatial locality)
- Good temporal locality with respect to y

Disadvantages:

- Insertion into A is costly
- Poor temporal locality with respect to x

Impact of Matrix Sparsity on Performance

Adressing overhead (dense MVM vs. dense MVM in CSR):

- ~ 2x slower (example only)

Fundamental difference between MVM and sparse MVM (SMVM):

- Sparse MVM is input dependent (sparsity pattern of A)
- Changing the order of computation (e.g., when blocking) requires changing the data structure (CSR)

Bebop/Sparsity: SMVM Optimizations

Idea: Blocking for registers
Reason: Reuse x to reduce memory traffic
Execution: Block SMVM y = y + Ax into micro MVMs

- Block size rx c becomes a parameter
- Consequence: Change A from CSR to rx c block-CSR (BCSR)

BCSR: Next slide

BCSR (Blocks of Size r x c)

Assumptions:

- A is $m \times n$
- Block size rxc
- $K_{r, c}$ nonzero blocks

A as matrix $(r=c=2)$

b	c		c	b_values	b	C	0	a	0		0	0	b	b	C	0	length $\mathrm{rc} \mathrm{K}_{r, c}$
	a			b_col_idx					0			1					length $K_{r, c}$
		b	b														
				b_row_start					0			3					length $m / r+1$

Storage:

- $r c K_{r, c}$ doubles $+\left(K_{r, c}+m / r+1\right)$ ints $=\Theta\left(r c K_{r, c}\right)$ (in typical case $\left.K \geq m\right)$
- $r C_{r, c} \geq K$

Sparse MVM Using 2×2 BCSR

void smvm_2x2(int bm, const int *b_row_start, const int *b_col_idx, const double *b_values, double *x, double *y)
\{
int i, j
double d0, d1, c0, c1;
/* loop over bm block rows */
for (i = 0; i < bm; i++) \{

```
        d0 = y[2*i]; /* scalar replacement since reused */
```

 \(d 1=y[2 * i+1] ;\)
 /* dense micro MVM */
 for (j = b_row_start[i]; j < b_row_start[i+1]; j++, b_values += 2*2) \{
 \(\mathrm{c} 0=\mathrm{x}\left[2^{*} \mathrm{~b} _\right.\)col_idx[j]+0]; /* scalar replacement since reused */
 c1 = x[2*b_col_idx[j]+1];
 d0 += b_values[0] * c0;
 d1 += b_values[2] * c0;
 d0 += b_values[1] * c1;
 d1 += b_values[3] * c1;
 \}
 \(y[2 * i]=d 0\);
 \(y[2 * i+1]=d 1 ;\)
 \}
 \}

BCSR

Advantages:

- Temporal locality with respect to x and y
- Reduced storage for indexes

Disadvantages:

- Storage for values of A increased (zeros added)
- Computational overhead (also due to zeros)

Which Block Size (rxc) is Optimal?

Example:

- 20,000 x 20,000 matrix (only part shown)
- Perfect 8×8 block structure
- No overhead when blocked rxc, with r, c divides 8

Speed-up Through rxc Blocking

- machine dependent
- hard to predict

How to Find the Best Blocking for given A?

Best block size is hard to predict (see previous slide)
Solution 1: Searching over all $r \times c$ within a range, e.g., $1 \leq r, c \leq 12$

- Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs
- So total cost = 1440 SMVMs
- Too expensive

Solution 2: Model

- Estimate the gain through blocking
- Estimate the loss through blocking
- Pick best ratio

Model: Example

Gain by blocking (dense MVM)

Overhead (average) by blocking

$16 / 9=1.77$

Model: Doing that for all r and c and picking best

Model

Goal: find best $r x c$ for $y=y+A x$
Gain through rxc blocking (estimation):

$$
G_{r, c}=\frac{\text { dense MVM performance in } r \times c B C S R}{\text { dense MVM performance in CSR }}
$$

dependent on machine, independent of sparse matrix
Overhead through rxc blocking (estimation)
scan part of matrix A

$$
O_{r, c}=\frac{\text { number of matrix values in } r \times \operatorname{BCSR}}{\text { number of matrix values in } C S R}
$$

independent of machine, dependent on sparse matrix
Expected gain: $\mathrm{G}_{\mathrm{r}, \mathrm{c}} / \mathrm{O}_{\mathrm{r}, \mathrm{c}}$

Gain from Blocking (Dense Matrix in BCSR)

Itanium 2

- machine dependent
- hard to predict

Typical Result (assumes cold cache)

Principles in Bebop/Sparsity Optimization

Optimization for memory hierarchy = increasing locality

- Blocking for registers (micro-MVMs)
- Requires change of data structure for A
- Optimizations are input dependent (on sparse structure of A)

Fast basic blocks for small sizes (micro-MVM):

- Unrolling + scalar replacement

Search for the fastest over a relevant set of algorithm/implementation alternatives (parameters r, c)

- Use of performance model (versus measuring runtime) to evaluate expected gain

Different from ATLAS

SMVM: Other Ideas

Value compression
Index compression
Pattern-based compression
Multiple inputs

Value Compression

Situation: Matrix A contains many duplicate values
Idea: Store only unique ones plus index information

A in CSR:

Index Compression

Situation: Matrix A contains sequences of nonzero entries
Idea: Use special byte code to jointly compress col_idx and row_start

Decoding

0: acc $=$ acc $* 256+$ arg.
1: $\mathrm{col}=\mathrm{col}+\mathrm{acc} * 256+\arg :$ acc $=0$;
emit_element(row, col); col $=\mathrm{col}+1$;
2: $\mathrm{col}=\mathrm{col}+\mathrm{acc} * 256+$ arg; acc $=0$; emit_element(row, col); emit_element(row, col +1); $\mathrm{col}=\mathrm{col}+2$
3: $\mathrm{col}=\mathrm{col}+\mathrm{acc} * 256+$ arg: acc $=0$;
emit_element(row, col);
emit_element(row, col +1):
emit_element(row, col +1);
emit_element(row, col +2); $\mathrm{col}=\mathrm{col}+3$
4: $\mathrm{col}=\mathrm{col}+\mathrm{acc} * 256+\mathrm{arg} ; \mathrm{acc}=0$;
emit_element(row, col);
emit_element(row, col +1)
emit_element(row, col +2);
emit_element(row, $\mathrm{col}+3$); $\mathrm{col}=\mathrm{col}+4$;
5: row = row $+1 ; \mathrm{col}=0$;

Pattern-Based Compression

Situation: After blocking A, many blocks have the same nonzero pattern
Idea: Use special BCSR format to avoid storing zeros; needs specialized micro-MVM kernel for each pattern

A as matrix

b	c		c
	a		
		b	b
		c	

Values in 2×2 BCSR

| b | c | 0 | a | 0 | c | 0 | 0 | b | b | c | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Values in $\mathbf{2 \times 2} \mathbf{2 P B R}$
b \quad c \quad a \quad c \quad b \quad b \quad c

+ bit string: 110101001110

Multiple Inputs

Situation: Compute SMVM $y=y+A x$ for several independent x
Experiments: up to $9 x$ speedup for 9 vectors

