Advanced Systems Lab
Spring 2024

Lecture: Memory hierarchy, locality, caches

Instructor: Markus Püschel
TA: Tommaso Pegolotti, several more

Organization

Temporal and spatial locality
Memory hierarchy
Caches

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010
Part of these slides are adapted from the course associated with this book
Problem: Processor-Memory Bottleneck

Processor performance doubled about every 18 months

Bus bandwidth doubled every 36 months

Core i7 Skylake:
Peak performance: 2 AVX three operand (FMA) ops/cycles consumes up to 192 Bytes/cycle

Core i7 Skylake:
Bandwidth: 16 Bytes/cycle

Solution: Caches/Memory hierarchy

Typical Memory Hierarchy

CPU registers hold words retrieved from L1 cache
L1 cache holds cache lines retrieved from L2 cache
L2 cache holds cache lines retrieved from main memory
Main memory holds disk blocks retrieved from local disks
Local disks hold files retrieved from disks on remote network servers
Remote secondary storage (tapes, distributed file systems, Web servers)
Local secondary storage (local disks)
Main memory (DRAM)
On-chip L2 cache (SRAM)
On-chip L1 cache (SRAM)
CPU registers

Smaller, faster, costlier per byte
Larger, slower, cheaper per byte
Abstracted Microarchitecture: Example Core i7 Skylake (2015)

Throughput (tp) is measured in doubles/cycle. For example: 4.

Latency (lat) is measured in cycles.

1 double floating point (FP) = 8 bytes

Why Caches Work: Locality

Locality: Programs tend to use data and instructions with addresses near or equal to those they have used recently

History of locality

Temporal locality:

Recently referenced items are likely to be referenced again in the near future

Spatial locality:

Items with nearby addresses tend to be referenced close together in time
Example: Locality?

```
sum = 0;
for (i = 0; i < n; i++)
    sum += a[i];
return sum;
```

Data:
- **Temporal**: `sum` referenced in each iteration
- **Spatial**: array `a[]` accessed consecutively

Instructions:
- **Temporal**: loops cycle through the same instructions
- **Spatial**: instructions referenced in sequence

Being able to assess the locality of code is a crucial skill for a performance programmer

Locality Example #1

```
int sum_array_rows(double a[M][N])
{
    int i, j; double sum = 0;
    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
    return sum;
}
```
Locality Example #2

```c
int sum_array_3d(double a[K][M][N])
{
    int i, j, k; double sum = 0;
    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            for (k = 0; k < K; k++)
                sum += a[k][i][j];
    return sum;
}
```

How to improve locality?

Why the peaks? Answer later

Operational Intensity Again

Definition: Given a program P, assume cold (empty) cache

Examples: Determine asymptotic bounds on I(n)

- Vector sum: $y = x + y$ \[\text{O(1)} \]
- Matrix-vector product: $y = Ax$ \[\text{O(1)} \]
- Fast Fourier transform \[\text{O(\log(n))} \]
- Matrix-matrix product: $C = AB + C$ \[\text{O(n)} \]
Compute/Memory Bound

A function/piece of code is:
- **Compute bound** if it has high operational intensity
- **Memory bound** if it has low operational intensity

Relationship between operational intensity and locality?
- They are closely related
- Operational intensity only describes the boundary last level cache/memory

Effects

FFT: \(I(n) = O(\log(n)) \)

MMM: \(I(n) = O(n) \)

Up to 40-50% peak
Performance drop outside last level cache (LLC)
Most time spent transferring data

Up to 80-90% peak
Performance can be maintained outside LLC
Cache miss time compensated/hidden by computation
Cache

Definition: Computer memory with short access time used for the storage of frequently or recently used instructions or data.

Naturally supports *temporal locality*

Spatial locality is supported by transferring data in blocks
 - **Core family:** one block = 64 B = 8 doubles

General Cache Mechanics

- **Cache:** Smaller, faster, more expensive memory caches a subset of the blocks.
- **Memory:** Larger, slower, cheaper memory viewed as partitioned into “blocks.”

Data is copied in block-sized transfer units.
General Cache Concepts: Hit

- Request: 14
- Data in block b is needed
- Block b is in cache: Hit!

Cache

| 8 | 9 | 14 | 3 |

Memory

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

General Cache Concepts: Miss

- Request: 12
- Data in block b is needed
- Block b is not in cache: Miss!
- Block b is fetched from memory
- Block b is stored in cache
 - Placement policy: determines where b goes
 - Replacement policy: determines which block gets evicted (victim)
Cache Structure

Example 1: direct mapped cache \((E = 1, B = 4 \text{ doubles}, S = 8) \)

Address of a double (64 bit)

<table>
<thead>
<tr>
<th>Tag</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>lsb</td>
<td>(000)</td>
</tr>
</tbody>
</table>

What is the set of all addresses that are mapped to this location?

Direct mapped cache:
every address yields a unique location in cache

Tag: needs to be stored in cache with the value to allow reconstruction of address

Always entire blocks (here 32 bytes) are loaded into cache

Example \((S=8, E=1)\)

```c
int sum_array_rows(double a[16][16]) {
    int i, j;
    double sum = 0;
    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}
```

```c
int sum_array_cols(double a[16][16]) {
    int i, j;
    double sum = 0;
    for (j = 0; j < 16; j++)
        for (i = 0; i < 16; i++)
            sum += a[i][j];
    return sum;
}
```

Ignore the variables sum, \(i, j \)

Assume: cold (empty) cache, \(a[0][0] \) goes here (= \(a \) is cache aligned)

How is the cache filled?
Cache Structure

Add associativity \((E = 2, B = 4 \text{ doubles}, S = 8) \)

- Address of a double (64 bit)
- 2 possibilities e.g., 01
- Lsb = 000
- E.g., 101
- E-way set-associative cache:
 - Every value has \(E \) possible locations

Usually, least recently used (LRU) is replaced.

Always entire blocks (here 32 bytes) are loaded into cache.

Example (\(S = 4, E = 2 \))

```c
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}

int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (j = 0; j < 16; j++)
        for (i = 0; i < 16; i++)
            sum += a[i][j];
    return sum;
}
```

Ignore the variables sum, i, j

Assume: cold (empty) cache, a[0][0] goes here

How is the cache filled?
General Cache Organization (S, E, B)

E = 2^s lines per set
E = associativity, E=1: direct mapped

S = 2^s sets

E = 2^e lines per set
E = associativity, E=1: direct mapped

S = 2^s sets

Cache size:
S x E x B data bytes

Cache Read

E = 2^s lines per set
E = associativity, E=1: direct mapped

S = 2^s sets

Address of word:
tag set block
offset

data begins at this offset

v tag 0 1 2 ... B-1
valid bit

B = 2^b bytes per cache block (the data)
Types of Cache Misses (The 3 C’s)

Compulsory (cold) miss

Occurs on first access to a block

Capacity miss

Occurs when working set is larger than the cache

Conflict miss

Conflict misses occur when the cache is large enough, but multiple data objects all map to the same slot

Not a clean classification but still useful

Terminology

Direct mapped cache:

- Cache with $E = 1$
- Means every block from memory has a unique location in cache

Fully associative cache

- Cache with $S = 1$ (i.e., maximal E)
- Means every block from memory can be mapped to any location in cache
- In practice too expensive to build
- One can view the register file as a fully associative cache

LRU (least recently used) replacement

- When selecting which block should be replaced (happens only for $E > 1$), the least recently used one is chosen
Small Example, Part 1

\[x[0] \]

Cache:
- \(E = 1 \) (direct mapped)
- \(S = 2 \)
- \(B = 16 \) (2 doubles)

Array (accessed twice in example)
- \(x = x[0], \ldots, x[7] \)

\[
\% \text{Matlab style code}
\begin{align*}
\text{for } j &= 0:1 \\
\text{for } i &= 0:7 \\
& \text{access}(x[i])
\end{align*}
\]

Result: 8 misses, 8 hits
Spatial locality: yes
Temporal locality: no

Access pattern: 0123456701234567
Hit/Miss: MHMHMHMHMHMHMH

Small Example, Part 2

\[x[0] \]

Cache:
- \(E = 1 \) (direct mapped)
- \(S = 2 \)
- \(B = 16 \) (2 doubles)

Array (accessed twice in example)
- \(x = x[0], \ldots, x[7] \)

\[
\% \text{Matlab style code}
\begin{align*}
\text{for } j &= 0:1 \\
\text{for } i &= 0:2:7 \\
& \text{access}(x[i]) \\
\text{for } i &= 1:2:7 \\
& \text{access}(x[i])
\end{align*}
\]

Result: 16 misses
Spatial locality: no
Temporal locality: no

Access pattern: 0246135702461357
Hit/Miss: MMMMMMMMMMMMMMMM
Small Example, Part 3

Cache:
- E = 1 (direct mapped)
- S = 2
- B = 16 (2 doubles)
Array (accessed twice in example)
- x = x[0], …, x[7]

Access pattern:
- Hit/Miss: 0123012345674567

Result: 4 misses, 12 hits (is optimal, why?)
Spatial locality: yes
Temporal locality: yes

Cache Performance Metrics

Miss rate
- Fraction of memory references not found in cache: misses / accesses
 = 1 – hit rate

Hit time
- Time (latency) to deliver a block in the cache to the processor
 - Skylake:
 - 4 clock cycles for L1
 - 12 clock cycles for L2

Miss penalty
- Additional time required because of a miss
 - Skylake: about 200 cycles for L3 miss
What about writes?

What to do on a write-hit?
- **Write-through**: write immediately to memory
- **Write-back**: defer write to memory until replacement of line

What to do on a write-miss?
- **Write-allocate**: load into cache, update line in cache
- **No-write-allocate**: writes immediately to memory

Write-back/write-allocate (Core) vs. Write-through/no-write-allocate

<table>
<thead>
<tr>
<th>Write-back/write-allocate (Core)</th>
<th>Write-through/no-write-allocate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:

\[z = x + y, \quad x, y, z \text{ vector of doubles of length } n \]

Assume they fit jointly in cache + cold cache

Memory traffic: \(Q(n) = 4n \text{ doubles} = 32n \text{ bytes} \)

Operational intensity: \(I(n) \)?
- \(W(n) = n \text{ flops, so} \)
- \(I(n) = W(n)/Q(n) = 1/32 \)
Locality Optimization: Blocking

Example: MMM

Code Example

```c
void mmm(double *A, double *B, double *C, int n) {
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            for (int k = 0; k < n; k++)
}
```

Diagram

![Diagram showing matrix multiplication]

Cache Miss Analysis MMM

C = A*B, all n x n

Assumptions: cache size $\gamma < n$, cache block: 8 doubles, only 1 cache, row-major order

Triple loop:

1. entry: $n/8 + n = 9n/8$ cache misses
2. entry: same

Total: $n^2 * 9n/8 = 9n^3/8$

Blocked (six-fold loop): block size b, 8 divides b

1. block: $nb/8 + nb/8 = nb/4$ cache misses
2. block: same

Total: $(n/b)^2 * nb/4 = n^3/(4b)$

How to choose b?

The above analysis assumes that the multiplication of $b \times b$ blocks can be done with only compulsory misses. This is achieved with $3b^2 \leq \gamma$.

$b = \sqrt[3]{\frac{\gamma}{3}}$ which yields about $\sqrt[3]{3}/(4*\sqrt[4]{\gamma}) \times n^3$ cache misses, a gain of $\approx 2.6*\sqrt[4]{\gamma}$

$I(n) = O(\sqrt[4]{\gamma})$
Experiment
Cascade Lake (Intel® Xeon® Silver 4210)
GCC 9.3.0
Flags: -O3 -ffast-math [-fno-tree-vectorize] -march=native

L1 cache: 4096 doubles
Block size b = 32

On MMM Cache Analysis
Refine the analysis by including the misses incurred by C
Compute the operational intensity in both cases
Try an analogous analysis for matrix-vector multiplication
The Killer: Two-Power Strided Working Sets

\% \(t = 1,2,4,8,\ldots \) a 2-power
\% size \(W \) of working set: \(W = n/t \)
for (\(i = 0; i < n; i += t \))
access(\(x[i] \))
for (\(i = 0; i < n; i += t \))
access(\(x[i] \))

Cache: \(E = 2, B = 4 \) doubles

\(t = 1: \) \(t = 2: \) \(t = 4: \) \(t = 8: \) \(t \geq 4S: \)

\begin{align*}
x[0] & \begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{bmatrix} \\
& \begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{bmatrix}
\end{align*}

Spatial locality: Temporal locality:
if \(W \leq C \) Temporal locality:
if \(W \leq C/2 \) Temporal locality:
if \(W \leq C/4 \) Temporal locality:
if \(W \leq C/8 \)

No spatial locality
No spatial locality
No spatial locality
No spatial locality

Working with a two-power-strided working set is like having a smaller cache

The Killer: Where Can It Occur?

Accessing two-power size 2D arrays (e.g., images) columnwise
- 2d Transforms
- Stencil computations
- Correlations

Various transform algorithms
- Fast Fourier transform
- Wavelet transforms
- Filter banks
Example from Before

```c
int sum_array_3d(double a[K][M][N])
{
    int i, j, k, sum = 0;
    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            for (k = 0; k < K; k++)
                sum += a[k][i][j];
    return sum;
}
```

Performance [flops/cycle]

CPU: Intel(R) Core(TM) i7-4980HQ CPU @ 2.80GHz
gcc: Apple LLVM version 8.0.0 (clang-800.0.42.1)
flags: -O3 -fno-vectorize

2-power strides

Summary

It is important to assess temporal and spatial locality in the code.

Cache structure is determined by three parameters

- block size
- number of sets
- associativity

You should be able to roughly simulate a computation on paper.

Blocking to improve locality

Two-power strides can be problematic (conflict misses)