
© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Instructors: Markus Püschel

TAs: Tommaso Pegolotti, several more

Advanced Systems Lab
Spring 2024, Lecture 1

Picture: www.tapety-na-pulpit.org

2
slide by Bertrand Meyer

1

2

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Today

Motivation for this course

Organization of this course

3

Embedded Computing

Audio/image/video processing, …

Scientific Computing

Physics/biology simulations, …

4

Numerical Computing

Unlimited need for performance

Large set of applications, but …

Relatively small set of critical components
(10s to 100s)

▪ Matrix multiplication

▪ Discrete Fourier transform (DFT)

▪ Viterbi decoder

▪ Shortest path computation

▪ Stencils

▪ Solving linear systems

▪ ….

Signal processing, communication, control, …

Consumer Computing

Cloud Computing

Data analytics, machine learning, …

3

4

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Scientific Computing (Clusters/Supercomputers)

5

data.giss.nasa.gov www.foresight.org

Climate modelling Finance simulations Molecular dynamics

Other application areas:
▪ Fluid dynamics
▪ Chemistry
▪ Biology
▪ Medicine
▪ Geophysics

Methods:
▪ Mostly linear algebra
▪ PDE solving
▪ Linear system solving
▪ Finite element methods
▪ Others

Cloud Computing (Server Farms)

6

Application areas:
▪ Data analytics
▪ Machine learning
▪ Database operations
▪ Others

Methods:
▪ Linear algebra
▪ Convolutions
▪ Tensor operations
▪ Others

5

6

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Consumer Computing (Desktop, Phone, …)

7

Photo/video processing Audio decoding Security

Image compression

Methods:
▪ Linear algebra
▪ Transforms
▪ Filters
▪ Others

Original JPEG JPEG2000

Embedded/Edge Computing (Low-Power Processors)

8

Sensor networks Cars Robotics

Applications:
▪ Signal processing
▪ Control
▪ Communication
▪ Inference
▪ Others

www.dei.unipd.it www.microway.com.auwww.ece.drexel.edu

Methods:
▪ Linear algebra
▪ Transforms
▪ Filters
▪ Coding
▪ Others

7

8

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Classes of Performance-Critical Functions

Transforms

Filters/correlation/convolution/stencils/interpolators

Dense linear algebra functions

Sparse linear algebra functions

Tensor operations

Coder/decoders

Graph algorithms

… several others

9

See also the 13 dwarfs/motifs in
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

How Hard Is It to Get Fast Code?

10

Algorithms

Software

Compilers

Microarchitecture

“compute Fourier transform”

“fast Fourier transform”
O(nlog(n)) or 4nlog(n) + 3n

e.g., a C function

How well does this work?

optimized executable

high runtime performance

9

10

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

The Problem: Example 1

11

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Runtime [s]

Straightforward
“good” C code (1 KB)

or ?

The Problem: Example 1

12

0

1

2

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

11

12

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

or ?

The Problem: Example 1

13

0

1

2

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

The Problem: Example 1

14

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

13

14

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

The Problem: Example 1

Vendor compiler, best flags

Roughly same operations count
15

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

Fastest code (1 MB)

12x

35x

0

5

10

15

20

25

30

35

40

45

50

0 1'000 2'000 3'000 4'000 5'000 6'000 7'000 8'000 9'000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]

The Problem: Example 2

Vendor compiler, best flags

Exact same operations count (2n3)
16

160x

Triple loop (< 1KB)

Fastest code (100 KB)

15

16

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Model predictive control

Eigenvalues

LU factorization

Optimal binary search organization

Image color conversions

Image geometry transformations

Enclosing ball of points

Metropolis algorithm, Monte Carlo

Seam carving

SURF feature detection

Submodular function optimization

Graph cuts, Edmond-Karps Algorithm

Gaussian filter

Black Scholes option pricing

Disparity map refinement

Singular-value decomposition

Mean shift algorithm for segmentation

Stencil computations

Displacement based algorithms

Motion estimation

Multiresolution classifier

Kalman filter

Object detection

IIR filters

Arithmetic for large numbers

Optimal binary search organization

Software defined radio

Shortest path problem

Feature set for biomedical imaging

Biometrics identification 17

“Theorem:”
Let f be a mathematical function to be implemented on a
state-of-the-art processor. Then

Performance of optimal implementation of f

Performance of straightforward implementation of f

≈
10–100

18

17

18

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Evolution of Processors (Intel)

19

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

CPU frequency [GHz]

Double Float Peak Performance [Gflop/s]

Multiple cores
Vector units

48 cores
8-way SIMD

times of free exponential speedup parallelism: work required

3380 Gflop/s

Evolution of Processors (Intel)

20

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

mem bandwidth [normalized starting point]

Double Float Peak Performance [Gflop/s]

increasing
gap

Performance more and more determined by data movement

19

20

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

And there is Processor Variety …

21

arm.com nvidia.com

GPUs

FPGA accelerators

nallatech.com

Domain-specific (here: Tile)

mellanox.com

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

...
t282 = _mm_addsub_ps(t268, U247);
t283 = _mm_add_ps(t282, _mm_addsub_ps(U247, _mm_shuffle_ps(t275, t275, _MM_SHUFFLE(2, 3, 0, 1))));
t284 = _mm_add_ps(t282, _mm_addsub_ps(U247, _mm_sub_ps(_mm_setzero_ps(), ………)
s217 = _mm_addsub_ps(t270, U247);
s218 = _mm_addsub_ps(_mm_mul_ps(t277, _mm_set1_ps((-0.70710678118654757))), ………)
t285 = _mm_add_ps(s217, s218);
t286 = _mm_sub_ps(s217, s218);
s219 = _mm_shuffle_ps(t278, t280, _MM_SHUFFLE(1, 0, 1, 0));
s220 = _mm_shuffle_ps(t278, t280, _MM_SHUFFLE(3, 2, 3, 2));
s221 = _mm_shuffle_ps(t283, t285, _MM_SHUFFLE(1, 0, 1, 0));
...

Compiler doesn’t do the job

Doing by hand: nightmare
22

Vector instructions: 3x

Multiple threads: 3x

Memory hierarchy/code style: 5x

21

22

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

0

5

10

15

20

25

30

35

40

45

50

0 1'000 2'000 3'000 4'000 5'000 6'000 7'000 8'000 9'000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]

23

Memory hierarchy/code style: 20x

Vector instructions: 4x

Multiple threads: 4x

Compiler doesn’t do the job

Doing by hand: nightmare

MMM kernel function

Summary and Facts I

Implementations with same operations count can have vastly different
performance (could be a 100x)

▪ A cache miss can be 10x more expensive than an operation

▪ Code style limits compiler

▪ Vector instructions

▪ Multiple cores = processors on one die

Minimizing operations count ≠ maximizing performance

End of free speed-up for legacy code

▪ Future performance gains through increasing parallelism

24

23

24

ATL_dmm4x2x4_avx.c

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Summary and Facts II

It is very difficult to write the fastest code
▪ Tuning for reduced data movement

▪ Vector instructions

▪ Code style (understand compiler limitations)

▪ Efficient parallelization (multiple threads)

▪ Requires expert knowledge in algorithms, coding, and architecture

Fast code can be large and hard to maintain (and ugly)
▪ Can violate “good” software engineering practices

Compilers often can’t do the job
▪ Often intricate changes in the algorithm required

▪ Optimization blockers

▪ No good way of evaluating choices

Highest performance is in general non-portable

25

Algorithms

Software

Compilers

Microarchitecture

performance

Algorithms

Software

Compilers

Microarchitecture

Compilers

Performance is different than other software quality features

26

25

26

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Performance/Productivity
Challenge

27

Current Solution

Legions of programmers implement and optimize the same
functionality for every platform and whenever a new platform
comes out

28

27

28

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Better Solution: Autotuning

Automate (parts of) the implementation or optimization

First autotuning research efforts
▪ Linear algebra: Phipac/ATLAS, LAPACK,

Sparsity/Bebop/OSKI, Flame

▪ Tensor computations

▪ PDE/finite elements: Fenics

▪ Adaptive sorting

▪ Fourier transform: FFTW

▪ Linear transforms: Spiral

▪ …many more since then

▪ New compiler techniques

29

Proceedings of the IEEE special issue, Feb. 2005

Promising area but much more work needed …

0

5

10

15

20

25

30

35

40

45

50

0 1'000 2'000 3'000 4'000 5'000 6'000 7'000 8'000 9'000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]

Memory hierarchy/code style: 20x

Vector instructions: 4x

Multiple threads: 4x

This course: Single core

30

29

30

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

This Course: Goals

Obtain a deeper understanding of performance

Learn how to write fast code

▪ Focus: Numerical programs & single core

▪ Principles studied using important examples

▪ Applied in homeworks and a research project

Learn about autotuning 31

Algorithms

Fast implementations of
numerical problems

Software

Compilers

Computer architecture

Today

Motivation for this course

Organization of this course

32

31

32

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Course: Times and Places

Lectures:

▪ Monday 10-12, HG F3

▪ Thursday 9-10, HG G3

Extra sessions: Only used when announced on website (default: does not
take place)

▪ Wednesday 14-16, HG E5

Course deregistration rule:

▪ Deadline: Second Friday in March

▪ After that: drop out = fail

33

Course Website Has all Info

34

https://acl.inf.ethz.ch/teaching/fastcode/

33

34

https://acl.inf.ethz.ch/teaching/fastcode/

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Team and Communication
Head TA: Tommaso Pegolotti Other TAs:

Course website has ALL information

Questions:

▪ Office hours (during period with homeworks): see website

▪ fastcode@lists.inf.ethz.ch: goes to TAs and lecturers

Finding project partner: fastcode-forum@lists.inf.ethz.ch

35

Mikhail Khalilov
 Hicham Leghettas
 Dionisios Spiliopoulos
 Theodoros Theodoridis
 Shien Zhu

Prerequisites and Organization

Requirements

▪ solid C programming skills

▪ matrix algebra

▪ Master student or above

Grading

▪ 40% research project

▪ 30% midterm exam

▪ 30% homework

Wednesday slot

▪ Gives you scheduled time to work together

▪ Occasionally we will move lecture there (will communicate if so)

▪ By default will not take place

▪ Midterm is usually in that slot but uses more rooms

36

35

36

https://acl.inf.ethz.ch/teaching/fastcode/
mailto:fastcode@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Research Project: Overview
Teams of 4

Yes: 4

Topic: Very fast implementation of a numerical problem

Until March 8:

▪ find a project team

▪ suggest to me a problem or pick from list (on course website posted this week)
Tip: pick something from your research or that you are interested in

▪ Register in our project system + you get a git repo for project

Show “milestones” during semester: One-on-one meetings

Give short presentation end of semester

Write 7 page standard conference paper (template on website)

Submit final code

37

Finding Project Team

Teams of 4: no exceptions

Use fastcode-forum@lists.inf.ethz.ch:

▪ “I have a project (short description) and am looking for partners”

▪ “I am looking for a team, am interested in anything related to visual
computing”

▪ “We are a group of three with a project on xxx and are looking for a fourth
team member”

In the beginning all of you are registered to that list

Once team is formed register it in our project system,
and you will automatically be deregistered you from mailing list

38

37

38

mailto:fastcode-forum@lists.inf.ethz.ch
https://medellin.inf.ethz.ch/courses/263-2300-ETH/

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Finding Project
Pick from list on website or select on yourself

Projects from website: number of teams is limited, once picked it is final

Select yourself:

▪ Pick something you are interested in

▪ Nothing that is dominated by standard linear algebra (matrix-matrix mult,
solving linear systems) or FFT, no stencil computations

▪ Send me a short explanation plus a publication with the algorithm for approval

Exact scope can be adapted during semester

▪ reduced to critical component

▪ specialized

You are in charge of your project!

▪ If too big, adapt

▪ If too easy, expand

▪ Don’t come after 2 months and say project does not work
39

Organize Project

Work as a team

Start asap with a team meeting, check milestones in project system

Keep communicating regularly during semester

Be fair to your team members, be a team player

Being able to work as a team is part of the exercise

If you give up on the course and thus the project, say so

If you don’t contribute we will fail you for the project
40

39

40

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Research Project: Possible Failures

Don’t do this:

▪ never meet

▪ not respond to emails

▪ “I don’t have time right to work on this project in the next few months, why
don’t you start and I catch up later”

▪ “I have a paper deadline in 1 month, cannot do anything else right now”

▪ while not desparate(project-partners) do
“I do my part until end of next week”
… nothing happens …

end

▪ “why don’t you take care of the presentation”

▪ “why don’t you take care of the report, I’ll do the project presentation”

Single point of failure:

▪ One team member is the expert on the project and says: I quickly code up
the basic infrastructure, then the three of you can join working on parts

▪ 1 month later, the “quickly coding up” …
41

Midterm Exam

Covers first part of course

Date: Wed, April 24th

No substitute date

There is no final exam

42

Point distribution 2022 (max = 100)

41

42

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Homework
4 homeworks during first half of course

Done individually, we use Moodle and Code Expert for some autograding

Exercises on algorithm/performance analysis, check out previous years

Implementation exercises

▪ Concrete numerical problems

▪ Study the effect of program optimizations, use of compilers, use of special
instructions, etc. (Writing C code + creating runtime/performance plots)

Small part of homework grade for neatness

Late homework policy:

▪ No deadline extensions, but

▪ 3 late days for the entire semester (at most 2 for one homework)

Solving homeworks completely analogous to homeworks in prior years is no
100% guarantee for full points – the material gets updated occasionally

43

Workload During Semester (Sketch)

44

Workload

Beginning of
semester

End of
semester

Homework
Project

Midterm

midterm

lectures end
first one-on-ones

43

44

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Academic Integrity

Zero tolerance cheating policy (cheat = fail + being reported)

Homeworks

▪ All single-student

▪ Don’t look at other students code

▪ Don’t copy code from anywhere

▪ Don’t share your code or solutions

▪ Ok to discuss things – but then you have to do it alone

▪ Careful with online discussion channels!

We use Moss to check copying (check out what it can do)

Don’t do copy-paste

▪ code

▪ ANY text

▪ pictures

▪ especially not from Wikipedia
45

Background Material

See course website and links in slides

Prior versions of this course: see website

I post all slides, notes, etc. on the course website

Training material: midterms and homeworks from prior years

On certain topics, feel free to consult extra resources (e.g., Wikipedia) that
are easily found by a web search

46

45

46

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Class Participation

All material I cover goes on the website, but not all my verbal explanations

We record all lectures (login credentials will be communicated by email)

It is a good idea to attend but not obligatory (obviously)

Do ask questions

If you drop the course, please unregister in mystudies

47

Feedback 2023

48

Workload in comparison with other courses

How technically demanding in comparison with other courses

moreless

moreless

Overall satisfaction with course

happyunhappy

47

48

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2024

Some Comments from Feedback
The amount of work required is too large.

Insane amount of work. There is absolutely no chance one can get the required 30
credits per semester with this course because there simply is not enough time to
work on the other courses.

The homework takes a very long time.

I wouldn't change much to be honest, this is a pretty intense course that requires
a lot of studying and time spent but I understand it is an Inter Focus course so I
didn't expect it to be very different.

Amazing class [….] reasonable workload, fair midterm, good homework

The graded assignments are very helpful and nice to solve. Moreover, the project
is also very nice

This course might honestly be the most well structured course out of all the ones
I've taken at ETH

Everything was amazing, the course has very interesting, up-to-date materials
49

49

	Slide 1: Advanced Systems Lab Spring 2024, Lecture 1
	Slide 2
	Slide 3: Today
	Slide 4
	Slide 5: Scientific Computing (Clusters/Supercomputers)
	Slide 6: Cloud Computing (Server Farms)
	Slide 7: Consumer Computing (Desktop, Phone, …)
	Slide 8: Embedded/Edge Computing (Low-Power Processors)
	Slide 9: Classes of Performance-Critical Functions
	Slide 10: How Hard Is It to Get Fast Code?
	Slide 11: The Problem: Example 1
	Slide 12: The Problem: Example 1
	Slide 13: The Problem: Example 1
	Slide 14: The Problem: Example 1
	Slide 15: The Problem: Example 1
	Slide 16: The Problem: Example 2
	Slide 17
	Slide 18
	Slide 19: Evolution of Processors (Intel)
	Slide 20: Evolution of Processors (Intel)
	Slide 21: And there is Processor Variety …
	Slide 22
	Slide 23
	Slide 24: Summary and Facts I
	Slide 25: Summary and Facts II
	Slide 26
	Slide 27
	Slide 28: Current Solution
	Slide 29: Better Solution: Autotuning
	Slide 30
	Slide 31: This Course: Goals
	Slide 32: Today
	Slide 33: Course: Times and Places
	Slide 34: Course Website Has all Info
	Slide 35: Team and Communication
	Slide 36: Prerequisites and Organization
	Slide 37: Research Project: Overview
	Slide 38: Finding Project Team
	Slide 39: Finding Project
	Slide 40: Organize Project
	Slide 41: Research Project: Possible Failures
	Slide 42: Midterm Exam
	Slide 43: Homework
	Slide 44: Workload During Semester (Sketch)
	Slide 45: Academic Integrity
	Slide 46: Background Material
	Slide 47: Class Participation
	Slide 48: Feedback 2023
	Slide 49: Some Comments from Feedback

