
A DESCRIPTIVE TITLE, NOT TOO GENERAL, NOT TOO LONG

Markus Püschel

Department of Computer Science
ETH Zurich, Switzerland

• The hard page limit is 7 pages in this style. This ex-
cludes references and excludes the short, mandatory
part on individual contributions (see end).

• No appendix.

• Do not reduce font size or use other tricks to squeeze.

• The pdf is formatted in the American letter format, so
may look a bit strange when printed out (and there is
no real reason to do this).

ABSTRACT

Describe in concise words what you do and the main result.
The abstract has to be self-contained and readable for a person
in the general area. Write the abstract last and keep it short.

1. INTRODUCTION

Do not start the introduction with the abstract or a slightly
modified version. What follows is a possible structure of the
introduction. This structure can be modified, but the content
should be the same. The introduction should definitely end on
the first page and leave some space for the second section on
the first page.

Motivation. The first task is to motivate what you do.
You can start general and zoom in one the specific problem
you consider. In the process you should have explained to
the reader: what you are doing, why you are doing, why it is
important (order is usually reversed).

For example, if my result is the fastest DFT implementa-
tion ever, one could roughly go as follows. First explain why
the DFT is important (used everywhere with a few examples)
and why performance matters (large datasets, realtime). Then
explain that fast implementations are very hard and expensive
to get (memory hierarchy, vector, parallel).

List some related work on fast implementations for your
project if available (in particular those that you compare
against) and very briefly explain what they did.

Contribution. Now you state what you do in this paper.
In our example it could be: presenting a DFT implementation

The author thanks Jelena Kovacevic. This paper is a modified version of
the template she used in her class.

for sizes divisible by 4 that is optimized for locality and uses
AVX SIMD operations. It is faster for some sizes > 128 than
prior code. Be brief so you have space for the core part of the
paper.

2. BACKGROUND ON THE
ALGORITHM/APPLICATION

Give a short summary on the algorithm or application that you
then later optimize. Show some of the key parts or equations.
Then define the cost measure and show the cost analysis that
you later use to create performance plots.

This section should end well before the end of page 2.

3. OPTIMIZATION PERFORMED

Now comes the “beef” of the paper, where you explain what
you did. Again, organize it in paragraphs with titles. As in
every section you start with a very brief overview of the sec-
tion.

For this course, explain all the optimizations you per-
formed. This mean, you first very briefly explain the baseline
implementation, then go through locality and other optimiza-
tions, and finally SSE (every project will be slightly different
of course). Show or mention relevant analysis or assumptions.
A few examples: 1) Profiling may lead you to optimize one
part first; 2) bandwidth plus data transfer analysis may show
that it is memory bound; 3) it may be too hard to implement
the algorithm in full generality: make assumptions and state
them (e.g., we assume n is divisible by 4; or, we consider
only one type of input image); 4) explain how certain data
accesses have poor locality. Generally, any type of analysis
adds value to your work.

As important as the final results is to show that you took
a structured, organized approach to the optimization and that
you explain why you did what you did.

Mention and cite any external resources including library
or other code.

Good visuals or even brief code snippets to illustrate what
you did are good. Pasting large amounts of code or screen
shots to fill the space is not good.



4. EXPERIMENTAL RESULTS

Here you evaluate your work using experiments. You start
again with a very short summary of the section. The typical
structure follows.

Experimental setup. Specify the platform (processor,
frequency, cache sizes) as well as the compiler, version, and
flags used. I strongly recommend that you play with opti-
mization flags and possibly compilers, even though this can
only be a minor aspect in the project and report.

Then explain what input you used and what range of sizes.
Go large enough so the computations takes a few minutes or
ideally even longer.

Results. Next divide the experiments into classes, one
paragraph for each. In the simplest case you have one plot that
has the size on the x-axis and the performance on the y-axis.
The plot will contain several lines, one for each relevant code
version. Discuss the plot and extract the overall performance
gain from baseline to best code. Also state the percentage of
peak performance for the best code. Note that the peak may
change depending on the situation. For example, if you only
do additions it would be 12 Gflop/s on one core with 3 Ghz
and SSE and single precision floating point.

Do not put two performance lines into the same plot if
the operations count changed significantly (that’s apples and
oranges). In that case, for example, first perform the opti-
mizations that reduce op count and report the runtime gain in
a plot. Then continue to optimize the best version and show
performance plots.

You should

• Follow to a reasonable extent (i.e., don’t stress out
about it) the guide to benchmarking presented in class,
in particular

• plots should be very readable (do 1 column, not 2 col-
umn plots for this class), including the font size. An
example is below (of course you can have a different
style),

• every plot answers a question, which you pose and ex-
tract the answer from the plot in its discussion

Every plot should be referenced and discussed (what does it
show, which statements do you extract).

Most important: Be analytical about your results. Explain
them as good as possible and in the end try to argue why more
performance is not possible. Read the FAQs (How the project
is graded) on the website.

5. CONCLUSIONS

Here you need to briefly summarize what you did and why
this is important. Do not take the abstract and put it in the
past tense. Remember, now the reader has (hopefully) read
the paper, so it is a very different situation from the abstract.

Try to highlight important results and say the things you really
want to get across. Be brief.

6. FURTHER COMMENTS

Here we provide some further tips.
Further general guidelines.

• For short papers, to save space, I use paragraph titles
instead of subsections, as shown in the introduction.

• It is generally a good idea to break sections into such
smaller units for readability and since it helps you to
(visually) structure the story.

• The above section titles should be adapted to more pre-
cisely reflect what you do.

• Each section should be started with a very short sum-
mary of what the reader can expect in this section.

• Do not use subsubsections.

• Make sure you define every acronym you use, no matter
how convinced you are the reader knows it.

• Always spell-check before you submit.

• Be picky. When writing a paper you should always
strive for high quality. Many people may read it and
the quality makes a big difference. In this class, the
quality also contributes to the grade.

• Books helping you to write better: [1] and [2].

Graphics. Fig. 1 is an example plot that I used in a lec-
ture. Note that the fontsize in the plot should not be any
smaller. On the other hand it is also a good rule that the font
size in the plot is not larger than the one in the caption (other-
wise it looks ugly).

Up to here you have 7 pages.

7. CONTRIBUTIONS OF TEAM MEMBERS
(MANDATORY)

In this mandatory section (which is not included in the 7 pages
limit) each team member should very briefly (telegram style is
welcome) explain what she/he did for the project. I imagine
this section to be maximally one column. Do not put any
appendix besides that.

Include only

• What relates to optimizing your chosen algorithm / ap-
plication. This means writing actual code for optimiza-
tion or for analysis.

• What you did before the submission of the presentation.



0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores) 

Performance [Gflop/s] vs. input size

Best vector and parallel code

Best vector code

Best scalar code

Numerical recipes

Mul�ple threads: 3x

Vector instruc�ons: 3x

Memory hierarchy: 5x

Fig. 1. Performance of four single-precision implementations
of the discrete Fourier transform. The operations count is
roughly the same. The labels in this plot are about the small-
est you should go.

Do not include

• Work on infrastructure and testing.

• Work done after the presentation took place.

Example and structure follows.
Marilyn. Focused on non-SIMD optimization for the

variant 2 of the algorithm. Cache optimization, basic block
optimizations, small generator for the innermost kernel (Sec-
tion 3.2). Roofline plot. Worked with Francois on the SIMD
optimization of variant 1, in particular implemented the bit-
masking trick discussed.

Hans. ...
Francois. ...
Isabella. ...

8. REFERENCES

[1] N.J. Higham, Handbook of Writing for Mathematical Sci-
ences, SIAM, 1998.

[2] W. Strunk Jr. and E.B. White, Elements of Style, Long-
man, 4th edition, 2000.


