
Bitwise Convolu.on for Ternary and Binary Neural Networks
Ternary and binary neural networks (TNNs and BNNs) are widely adopted fast deep learning models.
They u.lize 2-bit ternary (-1, 0, +1) and 1-bit binary (-1, +1) values to conduct convolu.on. Taking
TNNs as an example, ternary convolu.on contains quan.za.on, data reshaping, and bitwise direct
convolu.on or bitwise General Matrix Mul.plica.on (GEMM). The detailed algorithm is described in
the following paper:

TAB: unified and op.mized ternary, binary and mixed-precision neural network inference on the
edge

The goal of the project is to op.mize one layer of a TNN, consis.ng of

• data prepara.on (Algorithm 1 in the paper), followed by

• bitwise GEMM (Algorithm 3 in the paper), followed by

• the ac.va.on func.on (e.g., PReLU hUps://paperswithcode.com/method/prelu).

You will implement one TNN layer on X86_64 or ARM CPU. Depending on how things go and
difficulty, possible extension includes the other three types of ternary and binary convolu.on (TBN,
BTN, and BNN) described in the paper.

Quick explana-on & baseline code:

Algorithm 1 has four func.onali.es:

1. Quan.za.on: It quan.zes the input ac.va.on X into 2-bit ternary values.

2. Bit-Packing: Then it packs the 2-bit values into 64-bit integers for higher data-level
parallelism because exis.ng CPUs don’t have na.ve 2-bit data types.

3. Data Reshaping: It also reshapes the output quan.zed X from NCHW (Batch Size, Channel,
Height, Width) to NHWCB (Batch Size, Height, Width, Channel, Bit) data format with zero
padding.

4. Img2Row/Col: Then an Image-to-Row/Column func.on transforms the 5-dim X (4-dim in
binary cases as Bit=1) into a flat matrix considering the convolu.on stride, so that
convolu.on can be done by GEMM.

Algorithm 3 is a plain bitwise matrix mul.plica.on. PReLU is a non-linear func.on similar to leaky
ReLU but it allows parameterized leakage for nega.ve numbers.

The naive ternary convolu.on in C/C++ (TNN showed in Algo. 1 & 3) is provided as a baseline on
GitHub (hUps://github.com/yiweifengyan/ASL_TAB/tree/main). Algo.1 is realized by Ternarize() and
Img2Row() in the baseline code for clearer logic. The Ternarize() has fused the quan.za.on, bit-
packing, and data reshaping. Note that it may be possible to fuse/recombine these computa.on
steps, reshape the data format, and explore different SIMD micro-kernel sizes for beUer
performance.

https://dr.ntu.edu.sg/handle/10356/155648
https://dr.ntu.edu.sg/handle/10356/155648
https://paperswithcode.com/method/prelu
https://github.com/yiweifengyan/ASL_TAB/tree/main

