
263-0007-00: Advanced Systems Lab
Assignment 4: 120 points

Due Date: April 18th, 17:00
https://acl.inf.ethz.ch/teaching/fastcode/2024/

Questions: fastcode@lists.inf.ethz.ch

Academic integrity:

All homeworks in this course are single-student homeworks. The work must be all your own. Do not copy any parts

of any of the homeworks from anyone including the web. Do not look at other students’ code, papers, or exams. Do

not make any parts of your homework available to anyone, and make sure no one can read your files. The university

policies on academic integrity will be applied rigorously.

Submission instructions (read carefully):

• (Submission)
Homework is submitted through the Moodle system

• (Late policy)
You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours after
the due time. For example, submitting 1 hour late costs 1 late day. Note that each homework will be available
for submission on the system 2 days after the deadline. However, if the accumulated time of the previous
homework submissions exceeds 3 days, the homework will not count.

• (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert it to PDF and name
it homework.pdf. When submitting more than one file, make sure you create a zip archive that contains all
related files, and does not exceed 10 MB. Handwritten parts can be scanned and included.

• (Plots)
For plots/benchmarks, provide (concise) necessary information for the experimental setup (e.g.,
compiler and flags) and always briefly discuss the plot and draw conclusions. Follow (at least to a
reasonable extent) the small guide to making plots from the lecture.

• (Neatness)
5 points in a homework are given for neatness.

The exercises start from the next page.

263-0007-00 SS24 / Assignment 4
Instructor: Markus Püschel

Pg 1 of 8 Computer Science
ETH Zurich

https://acl.inf.ethz.ch/teaching/fastcode/2024/
https://moodle-app2.let.ethz.ch/course/view.php?id=22406


Exercises

1. Stride Access (30 pts)

Consider the following code executed on a machine with a cache with blocks of size 32 bytes and a
total capacity of 1 KiB. Assume that the only memory accesses are to entries of O and A and occur in
the order that they appear (from left to right when in the same line). The cache is initially cold and
array A begins at memory address 0, while array O begins immediately after the last element of A.
You can assume that A and O are of size n× n.

1 double stencil(double* A, int lda){

2 double acc = A[0];

3 acc += A[-lda];

4 acc += A[lda];

5 return acc;

6 }

7
8 void comp(double* A, double* O, int n, int s){

9 for(int i = 1; i < n-1; i++){

10 for(int j = 0, jj = 0; j < n; j+=s, jj++){

11 O[(i-1)*n/s+jj] = stencil (&A[i*n+j], n);

12 }

13 }

14 }

Asnswer the following. Justify your answers:

(a) Consider a direct-mapped cache, determine the miss rate when s = 1, n = 8.

Solution: All data fits in cache, we have only compulsory misses. Additionally, after the first
iteration of loop i, we have cache hits on accesses at line 2 and 3. So, miss-rate = 0.145.

(b) Consider a direct-mapped cache, determine the miss rate when s = 2, n = 16.

Solution: We access 112 values of O. This uses 28 rows of the cache (from 0 to 27). O and A
start at the same offset, so we have conflicts. O is accessed consecutively, while A is strided. O’s
miss rate is 25%. There are a total of (16 − 2) ∗ 16/2 ∗ 4 = 448 accesses. Of these, there are
conflicts at the start and when the stencil does a full loop and catches up to O. There are a total
of three conflicts, one of which at the very end. There are a total of 107 misses, meaning a miss
rate of 0.238 In case we consider the access to O to happen before the one to A we have a total
of 106 misses, meaning a miss rate of of 0.236.

(c) Consider a 2-way associative cache with a LRU replacement policy, determine the miss rate when
s = 2, n = 16.

Solution: There are no more conflicts, therefore we have 25% miss rate on O and ≈ 16% miss
rate on A after the first iteration of the i loop. Total number of misses is 92, meaning 20% miss
rate.

263-0007-00 SS24 / Assignment 4
Instructor: Markus Püschel

Pg 2 of 8 Computer Science
ETH Zurich



2. Cache Mechanics (20 pts)

Consider the following code executed on a machine with a direct-mapped write-back/write-allocate
cache with blocks of size 8 bytes and a total capacity of 64 bytes. Assume that memory accesses occur
in exactly the order that they appear. The variables i,j,i1,j1,x0,y0,res remain in registers and do
not cause cache misses. Array x is cache-aligned (first element goes into first cache block) and the first
element of y is immediately after the last element of x in memory. Both arrays are of size 10. Assume
a cold cache scenario. sizeof(float) = 4 bytes.

1 struct data_t {

2 float a;

3 float b;

4 float c;

5 float d;

6 };

7
8 float comp(data_t x[10], data_t y[10]) {

9 float res = 0;

10 for(int i = 0; i < 2; i++){

11 int i1 = i+1;

12 for(int j = 0; j <= 4; j+=2){

13 int j1 = j+1;

14 float x0 = x[i1*(i1+j1 )%4].a;

15 float y0 = y[j1*(i1+j1 )%4].b;

16 res += x0 * y0;

17 }

18 // Draw state of cache and write hit miss pattern here

19 }

20
21 for(int i = 0; i < 2; i++){

22 int i1 = i+1;

23 for(int j = 0; j <= 10; j+=5){

24 int j1 = j+1;

25 float x0 = x[i1*(i1+j1 )%7].c;

26 float y0 = y[j1*(i1+j1 )%7].d;

27 res -= x0 * y0;

28 }

29 // Draw state of cache and write hit miss pattern here

30 }

31 return res;

32 }

(a) Considering the cache misses of the computation, do the following two things for each iteration
of the two outermost loop:

1. determine the miss/hit pattern for x and y (something like x: MMHH. . . , y: MMMH. . . );

2. draw the state of the cache at the end of each iteration.

Show your work.

i. Miss/hit pattern and state of the cache at line 18, for i = 0, 1.

ii. Miss/hit pattern and state of the cache at line 30, for i = 0, 1.

Solution:

Miss/hit pattern:
Pos x y

First loop MMMHHH MMMMHH
Second loop MMMMMM MMMMHM

State of the cache:

263-0007-00 SS24 / Assignment 4
Instructor: Markus Püschel

Pg 3 of 8 Computer Science
ETH Zurich



i = 0

Set 0
0 y2.a, y2.b
1
2
3
4 x2.a, x2.b
5
6
7

i = 1

Set 0
0 y2.a, y2.b
1
2 y3.a, y3.b
3
4 x2.a, x2.b
5
6
7

i = 0

Set 0
0 y2.a, y2.b
1 y6.c, y6.d
2 y3.a, y3.b
3 x5.c, x5.d
4 x2.a, x2.b
5 y0.c, y0.d
6
7

i = 1

Set 0
0 y2.a, y2.b
1 y6.c, y6.d
2 y3.a, y3.b
3 y3.c, 33.d
4 x2.a, x2.b
5 x2.c, x2.d
6
7

(b) Repeat the previous task assuming now that the cache is 2-way set associative and uses a LRU
replacement policy. The cache size and block size stay the same.

Solution:

Miss/hit pattern:
Pos x y

First loop MMMHHH MMMMHH
Second loop MMMMMH MMMMMH

263-0007-00 SS24 / Assignment 4
Instructor: Markus Püschel

Pg 4 of 8 Computer Science
ETH Zurich



State of the cache:

i = 0

Set 0 1
0 y2.a, y2.b x2.a, x2.b
1
2
3

i = 0

Set 0 1
0 y2.a, y2.b x2.a, x2.b
1
2 y3.a, y3.b
3

i = 0

Set 0 1
0 y2.a, y2.b x2.a, x2.b
1 y6.c, y6.d y0.c, y0.d
2 y3.a, y3.b
3 x5.c, x5.d

i = 0

Set 0 1
0 y2.a, y2.b x2.a, x2.b
1 y6.c, y6.d x2.c, x2.d
2 y3.a, y3.b
3 y3.c, y3.d x5.c, x5.d

3. Rooflines (40 pt) Consider a processor with the following hardware parameters (assume 1GB = 109B):

• SIMD vector length of 256 bits.

• The following instruction ports that execute integer operations:

– Port 0 (P0): MAX, ADD, AND, OR

– Port 1 (P1): ADD, AND, OR

– Port 5 (P5): AND, OR

Each can issue 1 instruction per cycle and each instruction has a latency of 1.

• One write-back/write-allocate cache with blocks of size 64 bytes.

• Read bandwidth from the main memory is 30 GB/s.

• Processor frequency is 2 GHz.

• Do not consider index computations in your analysis.

(a) Draw a roofline plot for the machine. Consider only 32-bit integer arithmetic. Consider only reads.
Include a roofline for when vector instructions are not used and for when vector instructions are
used.

(b) Consider the following functions, where all input matrices are of size n×n. For each, assume that
vector instructions are not used, and derive hard upper bounds on its performance and operational
intensity (consider only reads) based on its instruction mix and compulsory misses. Ignore
the effects of aliasing and assume that no optimizations that change operational intensity are

263-0007-00 SS24 / Assignment 4
Instructor: Markus Püschel

Pg 5 of 8 Computer Science
ETH Zurich



performed (the computation stays as is). All arrays are cache-aligned (first element goes into
first cache set) and don’t overlap in memory. You can further assume that the max function is
translated into its respective instruction by the compiler and that all variables stay in registers.
Assume you write code that attains these bounds, and add the performance to the roofline plot
(there should be two dots).

1 // A, B, C, M are all of size n * n

2 void comp1(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *M, int n) {

3 for (int i = 0; i < n; i++) {

4 for (int j = 0; j < n; j++){

5 A[i*n+j] = A[i*n+j] + max(max(B[i*n+j],M[i*n+j]),C[i*n+j]);

6 }}}

7
8 // A, B, C, M are all of size n * n

9 void comp2(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *M, int n) {

10 for (int i = 0; i < n; i++) {

11 for (int j = 0; j < n; j++){

12 A[i*n+j] = A[i*n+j] | (B[i*n+j] & M[i*n+j]) & C[i*n+j];

13 }}}

(c) For each computation, what is the maximum speedup you could achieve by parallelizing it with
vector intrinsics? Assume that bitwise operations on 256 bits registers are used, for example
mm256 and si256(a,b) for comp2.

(d) Consider now this new function. Assume that all matrices are of size n×m.

1 void comp3(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *M, int n, int m) {

2 for (int i = 0; i < n; i++) {

3 for (int j = 0; j < m; j++){

4 for (int k = 0; k < m; k++){

5 A[i*m+j] = A[i*m+j] | (B[i*m+k] & M[i*m+k]) & C[i*m+j];

6 }}}}

Consider only scalar instructions. Derive hard upper bounds on performance and operational
intensity based on instruction mix and compulsory misses. Consider only memory reads.

(e) Plot the upper bound to the performance of comp3 on the roofline plot for m = 4, 8, 32. There
should be three new dots. Assume that for m ≥ 8 the code is vectorized.

Solution:

263-0007-00 SS24 / Assignment 4
Instructor: Markus Püschel

Pg 6 of 8 Computer Science
ETH Zurich



1
16

1
8

1
4

1
2

1 2 4 8 16

3
4

3
2

3

6

12

24

48

96

I = W/Q (iops/byte)

P
=
W
/
T

(i
o
p

s/
cy

cl
e)

Roofline plot:

Scalar roofline comp1 comp3

Vector roofline comp2

(a) β = 30
2 = 15 bytes/cycle, Max performance is obtained when doing 3 ADDs at the same cycle

=⇒ 3 iops. Memory bound threshold, βI = π =⇒ I = 3/15, βI = πv =⇒ I = 24/15

(b) Considering only compulsory misses.

For comp1: Q(n) ≥ 4 · 4n2, W (n) = 3n2, I(n) = 3n2

16n2 = 3/16, T (n) ≥ 2n2 since it’s bottlenecked
by the max, p1 ≤ 1.5.

For comp2 : Q(n) ≥ 4 · 4n2, W (n) = 3n2, I(n) = 3n2

16n2 = 3/16, T (n) ≥ 1n2, p2 ≤ 3. Note that
comp2 is memory bound, therefore its performance is 2.81 iops/cycles.

(c) Both comp1 and comp2 are memory bound. This means that even though they could achieve a
theoretical 8x speedup, they can only achieve 1.80× speedup and 1× respectively.

(d) Comp3 has W (n,m) = 3nm2, and Q(n,m) ≥ 4(4nm) = 16nm. I(n,m) ≤ 3nm2/16nm = 3/16m.
T (n,m) ≥ nm2 and p ≤ 3, since the ports can execute ANDs and ORs in parallel. This value is
achievable only if I(n) ≥ 3/15 = 0.2 meaning m > 1.

(e) i. m = 4, I = 3/4, the function is compute bound and p ≤ 3.

ii. m = 8, we can now assume vectoriaztion. I = 3/2. The function is memory bound, and
maximum performance is 3/2 · 15 = 22.5.

iii. m = 32. I = 6, the computation is compute bound and p ≤ 24.

4. Cache Miss Analysis (25 pts)

Consider the following computation that performs a matrix multiplication C = C + AB of a blocked
square matrix A of size n× n, and two matrices B and C of size n× b using a tiled j-i-p-k loop. Note
that we iterate only on the nonzero blocks of A. Each block Ai of A is of size b× b.

A0 0 0 0
0 A1 0 0
0 0

. . . 0
0 0 0 An/b




B0

B1...
Bn/b

 =


A0B0

A1B1...
An/bBn/b


263-0007-00 SS24 / Assignment 4
Instructor: Markus Püschel

Pg 7 of 8 Computer Science
ETH Zurich



1 void BGEMM(double* A, double* B, double* C, int n, int b){

2 for(int j = 0; j < b; j++){

3 for(int i = 0; i < n; i+=b){

4 for(int p = 0; p < b; p++){

5 for(int k = 0; k < b; k++){

6 C[(i+p)*b + j] += A[(i+p)*n + i+k] * B[(i+k)*b+j];

7 }

8 }

9 }

10 }

11 }

Assume that the code is executed on a machine with a write-back/write-allocate fully-associative cache
with blocks of size 32 bytes, a total capacity of γ doubles and with a LRU replacement policy. Assume
that n is divisible by b, b > 4, cold caches, and that all matrices are cache-aligned. Justify all your
answers.

(a) Assume γ << n and γ > 12b, determine, as precise as possible, the total number of cache misses
that the computation has. The result is parametric in b and n. For each of the matrices (A, B
and C), state also the kind(s) of locality it benefits from to reduce misses.

Solution: Locality type:

• A: spatial locality

• B: temporal locality

• C: temporal locality

db/4enb for A, nb for B and nb for C.

(b) Determine the minimum value of γ such that the computation only has compulsory misses.

Solution: In order to have compulsory misses only, the cache should be able to fit the nnz
elements of A, 4 columns of B, and 4 columns of C. This gives a total size of db/4e4n + 8n
doubles.

(c) Repeat subtask b after you switch loops i and j. Meaning the new order is i-j-p-k. Assume that
the body of the computation stays the same.

Solution: Now we need to store a tile b × b of A, b blocks of B, and 1 block of C. This gives a
size of db/4e4b+ 4b+ 4b doubles.

(d) Assume we avoid storing the zero elements of A, and we store the blocks A0, A1, . . . , Am contigu-
ously in memory. Give two performance benefits of this approach.

Solution:

i. Fewer TLB misses

ii. Fewer Cache misses

263-0007-00 SS24 / Assignment 4
Instructor: Markus Püschel

Pg 8 of 8 Computer Science
ETH Zurich


