
263-0007-00: Advanced Systems Lab
Assignment 1: 100 points

Due Date: Th, March 7th, 17:00
https://acl.inf.ethz.ch/teaching/fastcode/2024/

Questions: fastcode@lists.inf.ethz.ch

Exercises:

1. (15 pts) Get to know your machine
Determine and create a table for the following microarchitectural parameters of your computer:

(a) Processor manufacturer, name, number and microarchitecture (e.g. Haswell, Skylake, etc).

Solution: Intel Xeon Silver 4410Y, Sapphire Rapids

(b) CPU base frequency.

Solution: 2.0 GHz is the nominal CPU frequency.

(c) CPU maximum frequency. Does your CPU support Turbo Boost or a similar technology?

Solution: It does support Turbo Boost, and the maximum frequency is 3.9GHz.

(d) Phase in the Intel’s development model: Tick, Tock or Optimization. (if applicable)

Solution: Opt phase (Colden Cove).

Intel’s processors offer two different floating-point instruction sets, namely x87 and SSE/SSE2, that
can perform scalar floating-point operations. For example, a floating-point division can be performed
using either FDIV (from x87) or DIVSD (from SSE2) assembly instructions.

(e) Which floating-point division instruction is used when you compile code in your computer and
why is the other one still supported?

Solution: vdivsd is used. fdiv is still supported for backwards compatibility.

(f) Explain how the x87 floating-point unit represents floating-point numbers differently from SSE2.

Solution: x87 also supports 80-bits floating-point numbers, which use 15 bits for the exponent
and 63 bits for the mantissa. Sign and integer part both use 1 bit.

For one core and without using SIMD vector instructions, determine the following about your machine.
In (g)-(i), make sure to use the correct floating-point instruction (not the one from x87 in case you have
an Intel processor) and provide the reference where you found the latency and throughput information.

(g) Maximum theoretical floating-point peak performance in flops/cycle.

Solution: Without SIMD instructions, two FMAs can be issued per cycle. Thus, 4 flops/cycle.

(h) Latency [cycles], throughput [ops/cycle] and instruction name for both double- and single-precision
floating-point addition.

Solution: Latency: 4 cycles. Throughput: 2 per cycle. Instruction: ADDSS(D).

(i) Latency [cycles], throughput [ops/cycle] and instruction name for single-precision reciprocal square
root.

Solution:
According to Agner Fog’s measurements:
Latency: 4 cycles. Throughput: 1 per cycle. Instructin: RSQRTSS

(j) Latency [cycles], throughput [ops/cycle] and instruction name for both double- and single-precision
division operation.

Solution:
According to Agner Fog’s measurements:
Skylake: Latency: 11 cycles. Throughput: 0.33 per cycle. Instruction: DIVSS.
Skylake: Latency: 13-14 cycles. Throughput: 0.25 per cycle. Instruction: DIVSD.

263-0007-00 SS24 / Assignment 1
Instructor: Markus Püschel

Pg 1 of 6 Computer Science
ETH Zurich

https://acl.inf.ethz.ch/teaching/fastcode/2024/
https://www.agner.org
https://www.agner.org


2. (20 pts) LU Factorization

In this exercise, we provide a C source file for computing the LU factorization A = LU , with A being a
n×n matrix, and a C header file that allows to read the time stamp counter (TSC) of the processor for
x86 compatible systems. The code uses different timers available to time the LU factorization. Note
that if you have an Apple M processor, you can still access some of the timers available so you can still
complete the homework. Inspect and understand the code and do the following:

(a) Using your computer, compile and run the code. Compile with the highest level of optimization
provided by your compiler (with GCC, compile with the flag -O3). A modern compiler will
automatically vectorize this very simple routine. Ensure you get consistent timings between
timers and for at least two consecutive executions. Don’t forget to disable Turbo Boost. (No need
to answer anything here)

(b) Inspect the compute() function in lu.c and answer the following:

i. Determine the exact number of floating-point additions, multiplications and divisions that it
performs.
Solution: The code performs n(n− 1)/2 + n2(n− 1) floating-point operations.

ii. Determine an upper bound on its operational intensity (consider only reads and assume empty
caches).
Solution:
W (n) = n(n− 1)/2 + n2(n− 1) = n(2n+1)(n−1)

2 and Q(n) ≥ 8 · n2. Thus, I(n) ≤ (2n+1)(n−1)
16n

flops/bytes.

(c) For all square matrices of sizes n between 100 and 2000, in increments of 100, create a performance
plot with n on the x-axis and performance (flops/cycle) on the y-axis. Create three series such that:

i. The first series has all optimizations disabled: use flag -O0.

ii. The second series has the major optimizations except for vectorization: use flags -O3 and
-fno-tree-vectorize. If you are using the clang compiler, also add -fno-slp-vectorize

flag to disable vectorization.

iii. The third series has all major optimizations enabled including vectorization: use flags -O3,
-ffast-math and -march=native. If you are using an Apple M processor and your compiler
doesn’t support -march=native you can use -mcpu=apple-mx (switch x for your processor
version) instead.

Solution:

263-0007-00 SS24 / Assignment 1
Instructor: Markus Püschel

Pg 2 of 6 Computer Science
ETH Zurich

https://acl.inf.ethz.ch/teaching/fastcode/2024/homeworks/hw1/lu/lu.c
https://acl.inf.ethz.ch/teaching/fastcode/2024/homeworks/hw1/lu/tsc_x86.h


L2 L3

0

1

2

3

4

100 300 500 700 900 1100 1300 1500 1700 1900

Input size

v1 −O0

v2 −O3 −fno−tree−vectorize

v3 −O3 −ffast−math −march=native

Intel Xeon Silver 4410Y @ 2GHz
L1: 48KB, L2: 2MB, L3: 30MB
Compiler: GCC 11.4.0

Performance [F/C]

Figure 1: Plots resulting from execution of lu.c (vector peak performance: 16 f/c for the given flags).

(d) Discuss performance variations of your plots and report the highest performance that you achieved.

Solution:

i. Non-optimized (v1): This results in machine code that is neither optimized or vectorized.
This is nice for debugging. However, the performance is low and flat across problem sizes.

ii. Optimized but non-vectorized (v2): The performance is better than in the previous case.
However, the performance suffers due to the limited amount of ILP, the compiler is not able
to generate scalar FMAs instructions (example).

iii. Fully optimized (v3): The -ffast-math flag enables ILP which is combined with vectorization
and significantly improves performance. The computation performs well for small problem
sizes but performance suffers greatly as soon as the matrix A no longer fits in the cache. The
highest performance that we achieve is 3.3 flops/cycle.

3. (25 pts) Performance analysis and bounds

Assume that vectors u,w, x, y and z of length n are implemented using double precision floating-point
and combined as follows:

zi = ui · (wi + xi) · (ui − xi) + yi

We consider a Core i7 CPU with a Skylake microarchitecture. As seen in the lecture, it offers FMA
instructions (as part of AVX2). Recall that we consider cost of the FMA instruction as two floating-
point operations (an addition and a multiplication). Assume the bandwidths that are given in the
additional material from the lecture: Abstracted Microarchitecture. Assume that no optimization is
performed that simplifies floating-point arithmetic (i.e. -ffast-math flag is not used). Answer the
following and justify your answers.

(a) Define a suitable detailed floating-point cost measure C(n).

Solution:
C(n) = Cadd ·Nadd + Cmult ·Nmult.

263-0007-00 SS24 / Assignment 1
Instructor: Markus Püschel

Pg 3 of 6 Computer Science
ETH Zurich

https://godbolt.org/z/sGWMd96f7
https://acl.inf.ethz.ch/teaching/fastcode/2024/slides/03-architecture-core.pdf


(b) Compute the cost C(n) of the computation.

Solution:
Nadd = 3n,

Nmul = 2n,

C(n) = Cadd · (3n) + Cmul · (2n).

(c) Consider only one core without using vector instructions (i.e. using flag -fno-tree-vectorize)
and determine a hard lower bound (not asymptotic) on the runtime (measured in cycles), based on:

i. The throughput of the floating-point operations. Assume that no FMA instructions are
used. Be aware that the lower bound is also affected by the available ports offered for the
computation (see lecture slides).

ii. The throughput of the floating-point operations where FMAs are used to fuse an addition
and a multiplication (i.e. -mfma flag is enabled).

iii. The throughput of data reads, for the following two cases: All floating-point data is L3-
resident, and all floating-point data is RAM-resident. Consider the best case scenario (peak
bandwidth and ignore latency). Note that arrays that are only written are also read and this
read should be included.

Solution: We can obtain bounds by examining which execution ports the instructions are sched-
uled to and the throughputs of those instructions.

i. The instruction mix in this case consists of 3n floating-point additions and 2n floating-point
multiplications. All operations can be scheduled in either Port 0 or Port 1. Thus, a lower
bound on the runtime is 2.5n cycles.

ii. We can only fuse one addition with a multiplication into an FMA. Thus, we have n FMA
instructions, 2n additions, n multiplications. FMAs can also be scheduled in either Port 0 or
Port 1. Thus, resulting in a lower bound of 2n cycles.

iii. Abstracted Microarchitecture shows peak bandwidth of L3, and an estimate for the RAM
throughput. In the computation, at least 5n doubles have to be read in total. Thus, rL3 ≥ 5n

4
and rRAM ≥ 5n

2 .

(d) Determine an upper bound on the operational intensity. Assume empty caches and consider only
reads but note: arrays that are only written are also read and this read should be included.

Solution: The operational intensity is I(N) ≤ 5nflops
8(5n)bytes = 1

8 flops/byte.

4. (25 pts) Basic optimization

Consider the following function:

1 void comp(double* x, double *y, double *z, int n) {

2 for (int i = 0; i < n; i++) {

3 for (int k = 0; k < 2; k++){

4 z[k] += x[i+1-k] * y[i+k];

5 }

6 }

7 }

(a) Create a benchmarking infrastructure based on the timing function that produces the most consis-
tent results in Exercise 2 and for all two-power sizes n = 24, . . . , 227 create a performance plot for
the function comp with n on the x-axis (choose logarithmic scale) and performance (in flops/cycle)
on the y-axis. Randomly initialize all arrays. For all n repeat your measurements 30 times report-
ing the median in your plot. Compile your code with flags -O3 -mfma1 -fno-tree-vectorize.
If you are using clang, add also the -fno-slp-vectorize and -ffp-contract=fast flags.

1For Apple M processors, the flag -mfma may not be supported. If this is the case, use instead -mcpu=apple-mx, where x is
your processor version, or -march=native.

263-0007-00 SS24 / Assignment 1
Instructor: Markus Püschel

Pg 4 of 6 Computer Science
ETH Zurich

https://acl.inf.ethz.ch/teaching/fastcode/2024/slides/03-architecture-core.pdf


(b) Considering the latency and throughput information of floating-point operations in your ma-
chine, and the dependencies in comp, derive an upper bound on the performance (flops/cycles) of
comp when using the specified flags in (a), i.e., when FMA instructions are enabled (-mfma) but
vectorization is disabled (-fno-tree-vectorize).

Solution:
The runtime is limited by a dependency when accumulating the values in z[0] and z[1]. The
innermost loop is a single FMA, as we can issue two independent FMAs per cycle we can compute
the two FMAs in parallel. The latency of FMA is 4 cycles (Skylake) and there are two in parallel
in every outer-loop iterations. Thus, T (n) ≥ 4n. Since W (n) = 4n, the performance is upper
bounded by π(n) ≤ 1 flops/cycle.

(c) Perform optimizations that increase the ILP of function comp to improve its runtime. It is not
allowed to use vector instructions. Add the performance to the previous plot (so one plot with
two series in total for (a) and (c)). Compile your code with the same flags as before.

(d) Discuss performance variations of your plot and report the highest performance that you achieved.
Also discuss the optimizations that you performed to increase the ILP.

(e) Enroll and submit the code of your optimized function in Code Expert. Carefully read and follow
the instructions given in Code Expert to submit your code.

Solution:

L1 L2 L3

0

1

2

3

2^7 2^8 2^9 2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21 2^22 2^23 2^24 2^25 2^26 2^27

Input size

Baseline

Optimized

Intel Xeon Silver 4410Y @ 2GHz
L1: 48KB, L2: 2MB, L3: 30MB
Compiler: GCC 11.4.0 Flags: −O3 −fno−tree−vectorize

Performance [F/C]

Figure 2: Performance plot (peak performance: 4 f/c for the given flags).

In the original code, the performance suffers from inter loop dependency which limits the amount
of ILP. Thus, the performance is 1 flops/cycle across all problem sizes and it’s consistent with
the upper bound derived in (b). Unrolling the loop and using separate accumulators increases
the ILP. For the given machine, we need at least 8 accumulators. We see that performance varies
across problem sizes. Performance is great when the data fits in cache, and becomes worse as the
size of the data grows. We can even see “steps”: performance is greatest when the data fits in L1,
and becomes incrementally worse as it no longer fits in subsequent levels of cache. The maximum
performance achieved is 3.3 flops/cycle.

263-0007-00 SS24 / Assignment 1
Instructor: Markus Püschel

Pg 5 of 6 Computer Science
ETH Zurich

https://expert.ethz.ch/enroll/SS24/asl


5. (10 pts) ILP analysis

Consider the following computations:

1 double artcomp(double a, double b, double c, double d) {

2 double r;

3 r = (a*a*a) / (a*b + (c - d ));

4 return r;

5 }

Make the same assumptions as in Exercise 3, i.e., consider a Skylake processor, only one core with-
out using vector instructions (using flag -fno-tree-vectorize), and assume that no optimization is
performed that simplifies floating-point arithmetic (i.e. -ffast-math flag is not used). Thus, it is not
allowed to apply associativity and distributivity laws to rearrange the computation. Determine hard
lower bounds (not asymptotic) on the runtime (measured in cycles) for the following cases, based on
the latency, throughput and dependencies of the floating-point operations only. Be aware that the
lower bound is also affected by the available ports offered for the computation (see lecture slides). It
may be useful to draw the dependency graph of the computation. Justify your answers.

(a) Determine a hard lower bound on the runtime for artcomp when no FMA instruction is generated.

Solution: Multiplications and additions are issued on the same port. Since two independent
additions and multiplications can be issued in the same cycle we need to wait one cycle. This
increases the critical path by one. The runtime is at least 23 cycles. as shown in the critical
path of the dependency graph in Figure 3 (left).

(b) Determine a hard lower bound on the runtime for artcomp when FMA instructions are generated.

Solution: Now we can fuse an addition and a multiplication. This removes the initial contention
on the floating point port. The runtime is at least 22 cycles as shown in the critical path of the
dependency graph in Figure 3 (right).

⨉

⨉

c d

-

+

÷

c d

-

÷

fma

a b

a a

a

ba

⨉

⨉

⨉

a a

a
4

4

14

4

4

4 4

4 4

4

14

Only two of these can be executed together. 
The remaining one is executed in the following cycle

Figure 3: Dependency graph for artcomp.

263-0007-00 SS24 / Assignment 1
Instructor: Markus Püschel

Pg 6 of 6 Computer Science
ETH Zurich


