Fast FFT: Example FFTW Library

www.fftw.org

Frigo and Johnson, FFTW: An Adaptive Software Architecture for the FFT, ICASSP 1998

Frigo, A Fast Fourier Transform Compiler, PLDI 1999

Frigo and Johnson, The Design and Implementation of FFTW3, Proc. IEEE 93(2) 2005
Recursive Cooley-Tukey FFT

\[
\text{DFT}_{km} = (\text{DFT}_k \otimes I_m)T_m^k (I_k \otimes \text{DFT}_m)T_m^k \quad \text{decimation-in-time}
\]

\[
\text{DFT}_{km} = L_m^k (I_k \otimes \text{DFT}_m)T_m^k (\text{DFT}_k \otimes I_m) \quad \text{decimation-in-frequency}
\]

For powers of two \(n = 2^i \) sufficient together with base case

\[
\text{DFT}_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
\]

Cooley-Tukey FFT, \(n = 4 \)

Fast Fourier transform (FFT)

\[
\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & \ldots & 1 \\ 1 & 1 & \ldots & 1 \\ 1 & -1 & \ldots & 1 \\ 1 & 1 & \ldots & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & \ldots & 1 \\ 1 & 1 & \ldots & 1 \\ \ldots & \ldots & \ldots & 1 \end{bmatrix}
\]

Representation using matrix algebra

\[
\text{DFT}_4 = (\text{DFT}_2 \otimes I_2) \text{diag}(1, 1, 1, i)(I_2 \otimes \text{DFT}_2) L_2^4
\]

Data flow graph (right to left)

2 DFTs of size 2 at stride 2 2 DFTs of size 2
FFT, $n = 16$ (*Recursive, Radix 4*)

$$DFT_{16} = DFT_4 \otimes I_4 \quad T_{16}^4 \quad I_4 \otimes DFT_4 \quad L_{16}^4$$

Fast Implementation (\approx FFTW 2.x)

- Choice of algorithm
- Locality optimization
- Constants
- Fast basic blocks
- Adaptivity
1: Choice of Algorithm

Choose recursive, not iterative

\[\text{DFT}_{km} = (\text{DFT}_k \otimes I_m) T_{km}^{m} (I_k \otimes \text{DFT}_m) L_k^{km} \]

First recursive implementation we consider in this course

2: Locality Improvement

Straightforward implementation: 4 steps
- Permute
- Loop recursively calling smaller DFTs (here: 4 of size 4)
- Loop that scales by twiddle factors (diagonal elements of T)
- Loop recursively calling smaller DFTs (here: 4 of size 4)

4 passes through data: bad locality

Better: fuse some steps
2: Locality Improvement

\[\text{DFT}_n = (\text{DFT}_k \otimes \text{I}_m)^n \text{I}_m (I_k \otimes \text{DFT}_m) L_k^n \]

schematic:

- fuse: stage 2
 - compute \(m \) many \(\text{DFT}_k \cdot D \) with input stride \(m \) and output stride \(m \)
 - \(D \) is part of the diagonal \(T \)
 - writes to the same location then it reads from \(\rightarrow \) out-of-place

Interface needed for recursive call:

\(\text{DFT}_{\text{rec}}(m, x + i, y + m \cdot i, k, 1); \)

\(\text{DFT}_{\text{scaled}}(k, y + j, t[j], m); \)

Cannot handle further recursion so in FFTW it is a base case of the recursion

// code sketch

```c
void DFT(int n, cpx *x, cpx *y) {
    int k = choose_dft_radix(n); // ensure k small enough
    int m = n/k;
    for (int i = 0; i < k; ++i)
        DFTrec(m, x + i, y + m*i, k, 1); // implemented as DFT(…) is
    for (int j = 0; j < m; ++j)
        DFTscaled(k, y + j, t[j], m); // always a base case
```
3: Constants

FFT incurs multiplications by roots of unity

In real arithmetic:
Multiplications by sines and cosines, e.g.,

\[y[i] = \sin(i \cdot \pi/128) \cdot x[i]; \]

Very expensive!

Observation: Constants depend only on input size, not on input

Solution: Precompute once and use many times

```c
// codelet generator (codelet = optimized basic block)
void DFT(int n, cpx *x, cpx *y) {
  if (use_base_case(n))
    DFTbc(n, x, y); // use base case
  else {
    int k = choose_dft_radix(n); // ensure k <= 32
    int m = n/k;
    for (int i = 0; i < k; ++i)
      DFTrec(m, x + i, y + m*i, k, 1); // implemented as DFT(…)
    for (int j = 0; j < m; ++j)
      DFTscaled(k, y + j, t[j], m); // always a base case
  }
}
```

Just like loops can be unrolled, recursions can also be unrolled

Empirical study: Base cases for sizes \(n \leq 32 \) useful (scalar code)

Needs 62 base cases or “codelets” (why?)

- *DFTrec*, sizes 2–32
- *DFTscaled*, sizes 2–32

Solution: Codelet generator (codelet = optimized basic block)
FFTW Codelet Generator

- **FFTW codelet generator**
- Codelet for DFTrec
- Codelet for DFTscaled (twiddle codelet)

DAG generator → **Simplifier** → **Scheduler**

Small Example DAG

DAG:

```
  +----------------+  +----------------+  +----------------+  +----------------+
  |     f0        |  |     f1        |  |     f2        |  |     f3        |
  +----------------+  |     f4        |  +----------------+  +----------------+
  |                 |  |                 |  |                 |  |                 |
  |                 |  |                 |  |                 |  |                 |
  |                 |  |                 |  |                 |  |                 |
  |                 |  |                 |  |                 |  |                 |
  |                 |  |                 |  |                 |  |                 |
  +----------------+  +----------------+  +----------------+  +----------------+
```

One possible unparsing:

```c
f0 = x[0] - x[3];
f1 = x[0] + x[3];
f2 = x[1] - x[2];
f3 = x[1] + x[2];
f4 = f1 - f3;
y[0] = f1 + f3;
y[2] = 0.7071067811865476 * f4;
f7 = 0.9238795325112867 * f0;
f8 = 0.3826834323650898 * f2;
y[3] = f7 + f8;
f10 = 0.3826834323650898 * f0;
f11 = (-0.9238795325112867) * f2;
y[3] = f10 + f11;
```
DAG Generator

Knows FFTs: Cooley-Tukey, split-radix, Good-Thomas, Rader, represented in sum notation

\[y_{n_2 j_1 + j_2} = \sum_{k_1=0}^{n_1-1} \left(\omega_n^{j_2 k_1} \right) \left(\sum_{k_2=0}^{n_2-1} x_{n_1 k_2 + k_1 \omega_n^{j_2 k_2}} \right) \omega_{n_1}^{j_1 k_1} \]

For given \(n \), suitable FFTs are recursively applied to yield \(n \) (real) expression trees for outputs \(y_0, \ldots, y_{n-1} \)

Trees are fused to an (unoptimized) DAG

Simplifier

Applies:
- Algebraic transformations
- Common subexpression elimination (CSE)
- DFT-specific optimizations

Algebraic transformations
- Simplify mults by \(0, 1, -1 \)
- Distributivity law: \(kx + ky = k(x + y), \ km + lx = (k + l)x \)
 Canonicalization: \((x, y) \) to \((x, y), -(x, y) \)

CSE: standard
- E.g., two occurrences of \(2x+y \): assign new temporary variable

DFT specific optimizations
- All numeric constants are made positive (reduces register pressure)
- CSE also on transposed DAG
Scheduler

Determines in which sequence the DAG is unparsed to C (topological sort of the DAG)

Goal: minimize register spills

A 2-power FFT has an operational intensity of \(I(n) = O(\log(C)) \), where \(C \) is the cache size \[1\]

Implies: For \(R \) registers \(\Omega(n \log(n)/\log(R)) \) register spills

FFTW’s scheduler achieves this (asymptotic) bound independent of \(R \)

FFT-Specific Scheduler: Basic Idea

Cut DAG in the middle

Recurse on the connected components

How to find the middle?

input nodes (input vector)

middle

output nodes (output vector)

internal nodes: adds or mults by constant

Computation DAG
typedef struct {
 double* input;
 double* output;
} spiral_t;

cast double x708[] = { 1.0, 0.8235706535052267, 0.7071067811865476, 0.3826834323650898,
 cast double x709[] = { -0.0, 0.3826834323650898, 0.7071067811865476, 0.9238795325112867, 1.0, 0.9238795325112867, 0.7071067811865476,
 void staged(spiral_t* x0) {
 double* x2 = x0->output;
 double* x1 = x0->input;
 double x6 = x1[0];
 double x22 = x1[16];
 double x38 = x6 + x22;
 double x14 = x1[8];
 double x30 = x1[24];
 double x46 = x14 + x30;
 double x343 = x38 + x46;
 double x10 = x1[4];
 double x26 = x1[20];
 double x42 = x10 + x26;
 double x18 = x1[12];
 double x34 = x1[28];
 double x50 = x18 + x34;
 double x344 = x42 + x50;
 double x345 = x343 + x344;
 double x8 = x1[2];
 double x24 = x1[18];
 double x115 = x8 + x24;
 double x16 = x1[26];
 double x43 = x115 + x16;
 double x19 = x1[30];
 double x36 = x19 + x36;
 double x347 = x43 + x51;
 double x348 = x346 + x347;
 double x349 = x345 + x348;
 x2[0] = x349;
 double x7 = x1[1];
 double x23 = x1[17];
 double x39 = x7 + x23;
 double x11 = x1[9];
 double x31 = x1[25];
 double x47 = x11 + x31;
 double x76 = x47 + x36;
 double x11 = x1[5];
 double x27 = x1[21];
 double x43 = x11 + x27;
 double x10 = x1[13];
 double x31 = x1[29];
 double x11 = x1[15];
 double x30 = x30 + x11;
Codelet Examples

- Notwiddle 2 (DFTrec)
- Notwiddle 3 (DFTrec)
- Twiddle 3 (DFTscaled)
- Notwiddle 32 (DFTrec)

Code style:
- Single static assignment (SSA)
- Scoping (limited scope where variables are defined)

5: Adaptivity

```
// code sketch
void DFT(int n, cpx *x, cpx *y) {
    if (use_base_case(n))
        DFTbc(n, x, y); // use base case
    else {
        int k = choose_dft_radix(n); // ensure k <= 32
        int m = n/k;
        for (int i = 0; i < k; ++i)
            DFTrec(m, x + i, y + m*i, k, 1); // implemented as DFT(…)
        for (int j = 0; j < m; ++j)
            DFTscaled(k, y + j, t[j], m); // always a base case
    }
}
```

d = DFT_init(1024); // compute constant table; search for best recursion
d(x, y); // use many times
5: Adaptivity

$d = \text{DFT}_\text{init}(1024);$ // compute constant table; search for best recursion
$d(x, y);$ // use many times

Choices:

\[\text{DFT}_{km} = (\text{DFT}_k \otimes I_m)T_{km}^k(I_k \otimes \text{DFT}_m)L_{km}^k \]

Base case = generated codelet is called

Exhaustive search to expensive

Solution: Dynamic programming

FFTW: Further Information

Previous Explanation: FFTW 2.x

FFTW 3.x:

- Support for SIMD/threading
- Flexible interface to handle FFT variants (real/complex, strided access, sine/cosine transforms)
- Complicates significantly the interfaces actually used and increases the size of the search space
<table>
<thead>
<tr>
<th></th>
<th>MMM Atlas</th>
<th>Sparse MVM Sparsity/Bebop</th>
<th>DFT FFTW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache optimization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Register optimization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimized basic blocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other optimizations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptivity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Cache optimization**: Blocking (rarely useful) for Recursive FFT, fusion of steps.
- **Register optimization**: Blocking (changes sparse format) for Scheduling of small FFTs.
- **Optimized basic blocks**: Unrolling, scalar replacement and SSA, scheduling, simplifications (for FFT).
- **Other optimizations**: Precomputation of constants.
- **Adaptivity**: Search: blocking parameters, register blocking size, recursion strategy.