Operational Intensity Again

Definition: Given a program P, assume cold (empty) cache

Operational intensity: $I(n) = \frac{W(n)}{Q(n)}$

Asymptotic bounds on $I(n)$

- Vector sum: $y = x + y$ \(O(1)\)
- Matrix-vector product: $y = Ax$ \(O(1)\)
- Fast Fourier transform \(O(\log(n))\) \(O(\log(y))\) (not explained)
- Matrix-matrix product: $C = AB + C$ \(O(n)\) \(O(\sqrt{\gamma})\)

Cache lecture
\(\gamma = \text{size LLC (last level cache)}\)

Known to be optimal
Compute/Memory Bound

A function/piece of code is:
- **Compute bound** if it has high operational intensity
- **Memory bound** if it has low operational intensity

The roofline model makes this more precise

Roofline model/plot *(Williams et al. 2008)*

Platform model

- **mem**
 - Bandwidth β \(\leftarrow\) carefully measured (bytes/cycle)
 - Raw bandwidth from manual
 - unattainable (maybe 60% is)
 - Stream benchmark may be conservative
- **cache**
 - \(p\) cores
- Each with peak performance π (flops/cycle)

Algorithm/program model (n is the input size)

- **Work** $W(n)$ (flops)
- **Data movement** $Q(n)$ (bytes)
- **Runtime** $T(n)$ (cycles)

Derived:
- **Operational intensity** $I(n) = W(n)/Q(n)$ (flops/byte)
- **Performance** $P(n) = W(n)/T(n)$ (flops/cycle)

Example: one core, $\pi = 2$, $\beta = 1$, no SIMD

Bound based on β:
\[
\beta \geq Q/T = (W/T)/(W/Q) = P/I
\]

In log scale:
\[
\log_2(P) \leq \log_2(\beta) + \log_2(I)
\]

π/β log-log scale!
Roofline Plots

What happens if we introduce 4-way SIMD?

If β does not change: more programs become memory bound.

Roofline Plots

What if a program has an uneven mix of operations (e.g., 20% mults and 80% adds)?

A tighter roof may hold for this program (depends on units and ports).
Roofline Measurements

Tool developed in our group (code may need an update)
(G. Ofenbeck, R. Steinmann, V. Caparros-Cabezaz, D. Spampinato)
http://www.spiral.net/software/roofline.html

Example plots follow

Estimate operational intensity \(I = \frac{W}{Q} \) (cold cache):

- **daxpy**: \(y = \alpha x + y \)
 \(W = 2n \)
 \(Q = 3n \) doubles = 24n bytes
 \(I = \frac{1}{12} \)

- **dgemv**: \(y = Ax + y \)
 \(W = 2n^2 \)
 \(Q = n^2 \) doubles = 8n\(^2\) bytes
 \(I = \frac{1}{4} \)

- **dgemm**: \(C = AB + C \)
 \(W = 2n^3 \)
 \(Q \geq 4n^2 \) doubles = 32n\(^2\) bytes
 \(I \leq \frac{n}{16} \)

- **FFT**

Note:

- For **daxpy** and **dgemv**, \(Q \) is determined by compulsory misses.
- For **dgemm**, more misses than compulsory misses occur for larger sizes.
 If \(3n^2 \leq \gamma \) (cache size), equality should hold above.

Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, sequential
Cold cache

What happens when we go to parallel code?
Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, parallel
Cold cache

What happens when we measure with warm cache?

Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, sequential
Warm cache
Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Various MMM
Cold cache

Generalized Roofline Model

Website and tool: https://acl.inf.ethz.ch/research/ERM/

Summary

Roofline plots distinguish between memory and compute bound

Can be instantiated for different scenarios (e.g., computation on GPU, data in CPU memory)

Can be used for back-of-the-envelope computations on paper

Measurements difficult (performance counters) but doable

Easier variant just consider reads: $Q_{\text{read}}, \beta_{\text{read}}$

Interesting insights: use in your project!