
263-0007-00: Advanced Systems Lab
Assignment 2: 80 points

Due Date: Th, March 16th, 17:00
https://acl.inf.ethz.ch/teaching/fastcode/2023/

Questions: fastcode@lists.inf.ethz.ch

Exercises:

1. Short project info (5 pts)
Go to the list of milestones for the projects. If you have not done that yet, please register your project
there. Read through the different points and fill in the first two together with your team. It is enough
if only one member of the team submits this in the project system. Consider the following about your
project while filling the points (be brief):

Point 1) An exact (as much as possible) but also short, problem specification.

For example for MMM, it could be like this:

Our goal is to implement matrix-matrix multiplication specified as follows:

Input: Two real matrices A,B of compatible size, A ∈ Rn×k and B ∈ Rk×m. We may impose
divisibility conditions on n, k,m depending on the actual implementation.
Output: The matrix product C = AB ∈ Rn×m.

Give the name of the algorithm you plan to consider for the problem and a precise reference (e.g.,
a link to a publication plus the page number) that explains it.

Point 2) A very short explanation of what kind of code already exists and in which language it is
written.

Solution: This will be different for each student.

2. Optimization Blockers (30 pts)

In this exercise, we consider the following short computation that is part of the supplied code in Code
Expert:

1 void slow_performance1(mat* x, mat* y, mat*z) {

2 double t1;

3 for (int i = 0; i < z->n1; i++)

4 for (int j = 1; j < z->n2 - 1; j++) {

5 if (i % 2) {

6 t1 = mat_get(z,i,j)/sqrt(mat_get(y,0,i%2)) + (mat_get(x,i,j) + C1) *

7 (mat_get(x,i,j) - C1);

8 } else {

9 t1 = mat_get(z,i,j)/sqrt(mat_get(y,0,i%2)) + C1*mat_get(x,i,j);

10 }

11 mat_set(z,i,j-1, mat_get(z,i,j-1)* cos(C2*M_PI*j));

12 mat_set(z,i,j,t1);

13 mat_set(z,i,j+1,fmax(mat_get(z,i,j+1), mat_get(x,i,j+1)));

14 }

15 }

Do the following:

• Read and understand the code. It enables you to register functions with the same signature,
which will be timed in a microbenchmark fashion.

• Create new functions where you perform optimizations to improve the runtime. For example,
strength reduction, inlining, removing function calls, and others.

• You may apply any optimization that produces the same result in exact arithmetic.

• For every optimization you perform, create a new function in comp.cpp that has the same signature
as slowperformance1 and register it to the timing framework through the register function function
in comp.cpp. Let it run and, if it verifies, it will print the runtime in cycles.
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• Implement in function maxperformance the implementation that achieves the best runtime. This
is the one that will be autograded by Code Expert.

• For this task, the Code Expert system compiles the code using GCC 11.2.1 with the following flags:
-O3 -march=skylake -mno-fma -fno-tree-vectorize. Note that with these flags vectorization
and FMAs are disabled. It is also not allowed to use pragmas that modify the compilation
environment.

• It is not allowed to use vector intrinsics or FMAs to speedup your implementation.

• You can assume that the matrices are of size n× (n+ 1) with n = 100;

Discussion:

(a) Create a table with the runtime numbers of each new function that you created (include at
least 3). Briefly discuss the table explaining the optimizations applied in each step. Mention also
the maximum speedup that you achieved.

Solution:

Implementation Impl. 1 Impl. 2 Impl. 3 Impl. 4 Impl. 5
Runtime (cycles) 1260K 490K 289K 78.7K 24.5K

The table above reports runtime in cycles for six different implementations of the above code,
with optimizations turned on (-O3 -fno-tree-vectorize). The K stands for thousands. These
numbers were recorded on a Intel(R) Xeon(R) Silver 4210 @ 2.20GHz Cascade Lake with hyper-
threading disabled, and compiled with GCC 8.3.1.

Implementation 1 is the original code. Implementation 2 removes calls to mat set and mat get by
accessing the arrays directly. Implementation 3 unrolls the outer loop once. This allows to remove
the if-condition. In addition, some computations are precomputed. Implementation 4 unrolls the
inner loop three times to remove cosine operations. In addition, values that stay constant across
iterations are precomputed. Finally, implementation 5 removes extra memory accesses that are
repeated between iterations. We achieved a final speedup of 51.

(b) What is the performance in flops/cycle of your function maxperformance.

Solution: Implementation 5 performs 29 flops in the body of the inner-most loop and 30 flops
in the outer-most loop. The outer and inner loops perform 50 and 32 interations respectively.
Thus, W = 29 · 32 · 50 + 30 · 50 = 47.9K flops. The performance is therefore π = 47.9K

24.5K = 1.95
flops/cycle.

(c) Consider the theoretical peak performance for one core, without SIMD vector instructions and
without FMAs of the machine running the programs submitted to Code Expert. What percentage
of this theoretical peak performance did you achieve?

Solution: The theoretical peak performance is 2 flops/cycle with the given flags. Thus, we
achieved 97% of the peak performance.

3. Microbenchmarks(40 pts)

Your task is to write a program (without vector instructions, i.e., standard C) in Code Expert that
benchmarks the latency and inverse throughput (also called “gap” in the class) of the division operation
on doubles and the max operation (which returns the larger of two double precision floating-point num-
bers). In addition, the latency and gap of the function f(a) = 1√

a2−1 . We provide the implementation

of f(a) in foo.h. More specifically:

• Read and understand the code given in Code Expert.

• Implement the functions provided in the skeleton in file microbenchmark.cpp:

void initialize_microbenchmark_data (microbenchmark_mode_t mode);

double microbenchmark_get_max_latency ();

double microbenchmark_get_max_gap ();

double microbenchmark_get_div_latency ();

double microbenchmark_get_div_gap ();

double microbenchmark_get_foo_latency ();

double microbenchmark_get_foo_gap ();
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• You can use the initialize microbenchmark data function for any kind of initialization that
you may need (e.g. for initializing the input values).

• Note that the latency and gap of floating-point square root and division can vary depending on
their inputs. Thus, you are also required to find the minimum latency and gap for division and
function f(a). Hint: You can try using values where performing those operations becomes trivial.

• Note that the compiler usually transforms short implementations of the max operator that use the
ternary operator (also called conditional operator) into its respective max assembly instruction.

• It is not allowed to manually inline the function in foo.h into the implementation of your mi-
crobenchmarks.

• Make sure that your benchmarks yield stable measurements between runs.

• It is not allowed to use assembly nor intrinsics.

Additional information:

• Our Code Expert system already has Turbo Boost disabled. However, note that CPUs may
throttle their frequency below the nominal frequency. To ensure that the CPU is not throttled
down when running the experiments, one can warm up the CPU before timing them.

• For this task, our Code Expert system uses GCC 11.2.1 to compile the code with the following flags:
-O3 -fno-tree-vectorize -march=skylake -mno-fma -fno-math-errno. Note that with these
flags vectorization and FMAs are disabled. The -fno-math-errno flag is used to guarantee that
the sqrt function call is converted to its respective instruction.

Discussion:

(a) Do the latency and gap of floating point max and division match what is in the Intel Optimization
Manual? If no, explain why. (You can also check Agner’s Table).

Solution: Yes, the manual reports a latency and gap for maxsd instructions (Skylake) of 4 and
0.5 cycles respectively which is consistent with the microbenchmarks. For the division (divsd),
the manual reports 14 and 4 cycles for latency and gap respectively and Agner reports 13-14 and
4 cycles respectively. The measured latency and gap in the microbenchmarks are 14 and 4 cycles
for a random value and 13 and 4 cycles for a trivial input value. These values are consistent with
both, the Intel’s manual and Agner’s measurements.

(b) Based on the dependency, latency and gap information of the floating point operations, is the
measured latency and gap of function f(a) close to what you would expect? Justify your answer.

Solution: Yes, function f(a) consists of a multiplications, an addition, a square root operation,
and a division. This gives a theoretical latency of 4 (mul) + 4 (add) + 18 (sqrt) + 14 (div) = 40
cycles which is consistent with the measurements. Note that Agner reports a latency of 15-16
cycles for square root. If we consider his numbers, then we would expect 37-38 cycles of latency.
For the theoretical gap, the square root and the division become the bottleneck because they
share the same execution unit in port 0. Thus, the gap is 6 (sqrt) + 4 (div) = 10 cycles which is
also consistent with the measurements.

(c) Assume that we implement two different versions of f(a) as follows:

f2(a) =
1√

(a+ 1)(a− 1)
, f3(a) =

√
1

a2 − 1
.

Further, assume that we compile them with FMA enabled (i.e., we remove the -mno-fma flag). Will
the latency and gap be different for these new implementations of f(a) compared to the original
one which was compiled without FMAs? Justify your answer and state, for each function, the
expected latency and gap in case you think it will change.

Solution: No FMA instruction will be generated in f2(a) and the addition and subtraction can
be scheduled in parallel. Thus, the latency will stay the same as the original: 4 (add | sub) +
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4 (mul) + 18 (sqrt) + 14 (div) = 40 cycles. In f3(a) the multiplication and subtraction will be
fused into an FMA. Thus, the latency will decrease to 4 (fma) + 14 (div) + 18 (sqrt) = 36 cycles.
The gap will not change for both functions since the square root and division are the bottleneck
in all functions.
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