© Markus Piischel ETH
Computer Science

How to Write Fast Numerical Code

Spring 2013
Lecture: Performance Counters and applying the Roofline Model

Slides and lecture by Georg Ofenbeck

Instructor: Markus Pischel
TA: Georg Ofenbeck & Daniele Spampinato

idgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Read Time Step Counter

CPUID();
RDTSC(start);

/* Sum two arrays */
for(i = @; 1 < num_runs; i++) #cycles = end - start
z[i] = x[i] + y[i];

RDTSC(end);
CPUID();

= “Read time step counter” instruction to read Invariant TSC
m Monotonically increasing counter, wrap around > 10y
m Stored in a “Machine Specific Register” (MSR)

m Easily access able counter (dedicated instruction, user mode)

How to write fast numerical code
Spring 2013

© Markus Piischel ETH
Computer Science

Performance Counters

ReadCounter(start);

/* Sum two arrays */
for(i = @; i < num_runs; i++) #icounted Events = end - start
z[i] = x[i] + y[i];

ReadCounter(end);

m All modern processors include performance counters
" |ntel Pentium Pro — Intel i3/5/7
= AMD K7 and AMD AMD64
= |BM PPC970, PPC970MP, POWERA4+, IBM Cell processors (incl. Sony PS3)
= MIPS: 5K, 20K, 25KF, 34K, 5KC, 74K,
= ARM Cortex

Performance Counters

ReadCounter(start);

/* Sum two arrays */
for(i = ©; i < num_runs; i++) #icounted Events = end - start
z[i] = x[i] + y[i];

ReadCounter(end);

= All modern processors include performance counters
= Intel Pentium Pro — Intel i3/5/7
= AMD K7 and AMD AMD64
= |BM PPC970, PPC970MP, POWERA4+, IBM Cell processors (incl. Sony PS3)
= MIPS: 5K, 20K, 25KF, 34K, 5KC, 74K,
= ARM Cortex

How to write fast numerical code
Spring 2013

© Markus Piischel ETH

Types of Counters (Intel)

m Fixed function counters
= Predefined events that are commonly used
" TSC, instructions retired, core clock cycles, ...

m General purpose performance counters
= can be programmed to follow a specific event

@[32K L1 Instruction Cache - Pre-decode - Instr Queue s |

Branch Predictor

Load W Stare F Rearder —————jimm

Buffers || Buffers || Butfers :b-__‘ Allocate/Rename/Retire

Decoders

[1.5K uOP Cache

In-order

Scheduler
Port 0 [PortT | [Port5 | [Port2 | [Port3 [Port4 |
ALU ALU Load |[Load STD
V-Hul VAdd | [JMP StAddr || StAddr
V-Shuffl | V-Shuffld | 256- FP Shuf
Fdiv 256- FP Add 256- FP Bool
256- FP MUL 256- FP Blen
256- FP Blend Memory Control

4@ byteslcycle

Line Fill
== 256K L2 Cache (Unified) Buffers b
ﬁ 32K L1 Data Cache

Intel microarchitecture code name Sandy Bridge Pipeline Functionality

Types of Counters (Intel)

m Fixed function counters
= Predefined events that are commonly used
= TSC, instructions retried, core clock cycles, ...

= General purpose performance counters
® can be programmed to follow a specific event

Core
Level 3 Cache
= B B T
&
Clock
Intel "Wy
QPI DRAM 5159

Eidgensssische Technlsche Hochschule Zurich

Computer Science swis rdiinstite of ecnnology zunch

How to write fast numerical code
Spring 2013

© Markus Piischel ETH
Computer Science s

Types of Counters (Intel)

m Fixed function counters
= Predefined events that are commonly used
" TSC, instructions retried, core clock cycles, ...

m General purpose performance counters
= can be programmed to follow a specific event

m Precise-event based sampling
= Trigger interrupt coupled to counter
= Allows to e.g. trace memory access

Evolution of Performance Counters

Willamette: — Teias Released - Canceled - Fulure - Microarchitecture name
L L. cedamil

Prescott-2M —=Cedar Mill
Smithfield —»Presler

NetBurst

- - Core
{mm ~ T — 28— Dothan —— 160 1o oo | [T | [s Hawell]—-[Sk

P8 [Kentsfield —» Yorkfield {—vf s IHaswell —s Broadwellj—| Skylake —s Skymont

| 1sonm 1308m 1 s0nm 1 650m | asnm 1 320m 1 220m 1 14 nm, I 1oam |

‘Afom
Silverthome —sLincroft
Diamondville —sPineview —sCedarview

perfmon version 1 perfmon version 3

2 programmable Counters per Core 8 programmable Counters per Core

3 fixed Counters per Core 3 fixed Counters per Core

40 bit width 2 programmable Counters for LLC Communication per Core
2 programmable Counters Uncore

System Wide Counting 1 fixed Counter Uncore
48 bit width

per HW Thread Counting
“Precise Event Based Sampling”

How to write fast numerical code
Spring 2013

© Markus Piischel ETH

Accessing the Counters

m Perfmon(1-3) defines how to program the counters

m Counters differ between microarchitectures (and in-between)

m To access directly
" Acquire root somehow (MSR access)
= Disable counter in control MSR
= Program events and behaviour you like

in config MSR

= Enable counters in control and config MSR
= Check overflow MSR / read value from counter MSR

Accessing the Counters

63 3534333231

87 6543 210

FIXED_CTR2 enable 4

FIXED_CTR1 enable ———
FIXED_CTROenable —— |

PMC7_EN (if PMCT present)

PMC6_EN (if PMC6 present)

PMCS:EN (if PMC5 present)
PMC4_EN (if PMC4 present)

i

PMC3_EN

PMC2_EN
PMC1_EN

PMCO_EN

l:l Reserved

[] vaiid if CPUID.OAH:EAX[15:8] = &, else reserved.

Figure 18-26. IA32_PERF_GLOBAL_CTRL MSR in Intel® Microarchitecture Code Name Sandy Bridge

63 3

2423222I2D191B171H15 87

0

Counter Mask N

P
‘ (cmask) | c

o
KES

elal
AL
NIyl T

u
S [Unit Mask (UMASK),
R

Event Select

INV—Invert counter maskJ

EN—Enable counters.
ANY—Any Thread
INT—APIC interrupt enable
PC—Pin control —M8M8

E—Edge detect————————
OS—Operating system mode———
USR—User Mode —78 —————————

[1 Reserved

Figure 18-6. Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance Monitoring Version 3

Eidgensssische Technlsche Hochschule Zurich

Computer SCIeNCe swis raersimssiute of recrnology zunch

How to write fast numerical code
Spring 2013

Tool for Counters

= Intel VTune
= Sampling based

m Perf, papi, libpfm4
® Linux only, uncore poorly supported

m Intel PCM
= |Intel only, Cross OS, direct access to MSRs

11

Caveats

= Generally many, many, many things that can go wrong
= Example flop counter with perf

Sum Reduction

REPS=30 - .005 Threshold on 1st derivative

100000000
10000000 128
1000000 — 1Ki
100000 10K
8 10000 - — 100K
[}
5 1000 M
12M
100
10
1
10 100 1000 10000 100000 1000000
12
RLINS
© Markus Piischel ETH How to write fast numerical code

Computer Science Spring 2013

© Markus Piischel ETH

; ”
Computer Science s

13

Caveats

General

®= Dead code elimination, “smart” compiler, Initialization
= Asynchronous calls
= Alignment
= HW prefetcher
m Timing
" Frequency scaling
= per thread counters don’t capture total runtime

Flops
= Distinguishing single / double precision not necessary possible

= Memory
= On desktop Intel machines not straightforward
= WB cache, prefetcher, ...

How to write fast numerical code

Spring 2013

© Markus Piischel ETH

; ”
Computer Science s

Perfplot

m Tool to ease the effort of creating performance / roofline plots
m Modified Intel PCM to allow start / stop measurements

measurement_init(counters); //Array with Mask/Eventnr

for(r = 9; r < nr_repeats; r++){
measurement_start();
/* Sum two arrays */
for(i = 0; i < n; i++)
z[i] = x[i] + y[i];
measurement_stop();

}

measurement_end(); //Dump results to files

m Instrument your code as depicted and link with the modified PCM

15

Perfplot

In collaboration with
® Ruedi Steinman

® Victoria Caparros Cabezas
= Daniele Spampinato

Available at https://github.com/GeorgOfenbeck/perfplot

Scala scripts to automate
= Compilation and execution in temporary directories
= Retrieving the results and collecting them for plots

Python plot scripts for
= Performance plots
= Roofline plots

How to write fast numerical code
Spring 2013

https://github.com/GeorgOfenbeck/perfplot
https://github.com/GeorgOfenbeck/perfplot

