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Read Time Step Counter

CPUID();
RDTSC(start);

/* Sum two arrays */
for(i = @; 1 < num_runs; i++) #cycles = end - start
z[i] = x[i] + y[i];

RDTSC(end);
CPUID();

= “Read time step counter” instruction to read Invariant TSC
m Monotonically increasing counter, wrap around > 10y
m Stored in a “Machine Specific Register” (MSR)

m Easily access able counter (dedicated instruction, user mode)
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Performance Counters

ReadCounter(start);

/* Sum two arrays */
for(i = @; i < num_runs; i++) #icounted Events = end - start
z[i] = x[i] + y[i];

ReadCounter(end);

m All modern processors include performance counters
" |ntel Pentium Pro — Intel i3/5/7
= AMD K7 and AMD AMD64
= |BM PPC970, PPC970MP, POWERA4+, IBM Cell processors (incl. Sony PS3)
= MIPS: 5K, 20K, 25KF, 34K, 5KC, 74K, .....
= ARM Cortex
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Types of Counters (Intel)

m Fixed function counters
= Predefined events that are commonly used
" TSC, instructions retired, core clock cycles, ...

m  General purpose performance counters
= can be programmed to follow a specific event
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Types of Counters (Intel)

m Fixed function counters
= Predefined events that are commonly used
= TSC, instructions retried, core clock cycles, ...

= General purpose performance counters
® can be programmed to follow a specific event
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Types of Counters (Intel)

m Fixed function counters
= Predefined events that are commonly used
" TSC, instructions retried, core clock cycles, ...

m  General purpose performance counters
= can be programmed to follow a specific event

m Precise-event based sampling
= Trigger interrupt coupled to counter
= Allows to e.g. trace memory access

Evolution of Performance Counters
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perfmon version 1 perfmon version 3

2 programmable Counters per Core 8 programmable Counters per Core

3 fixed Counters per Core 3 fixed Counters per Core

40 bit width 2 programmable Counters for LLC Communication per Core
2 programmable Counters Uncore

System Wide Counting 1 fixed Counter Uncore
48 bit width

per HW Thread Counting
“Precise Event Based Sampling”
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Accessing the Counters

m Perfmon(1-3) defines how to program the counters

m Counters differ between microarchitectures (and in-between)

m To access directly
" Acquire root somehow (MSR access)
= Disable counter in control MSR
= Program events and behaviour you like

in config MSR

= Enable counters in control and config MSR
= Check overflow MSR / read value from counter MSR

Accessing the Counters
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Tool for Counters

= Intel VTune
= Sampling based

m Perf, papi, libpfm4
® Linux only, uncore poorly supported

m Intel PCM
= |Intel only, Cross OS, direct access to MSRs

11

Caveats

= Generally many, many, many things that can go wrong
= Example flop counter with perf
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Caveats

General

®= Dead code elimination, “smart” compiler, Initialization
= Asynchronous calls
= Alignment
= HW prefetcher
m Timing
" Frequency scaling
= per thread counters don’t capture total runtime

Flops
= Distinguishing single / double precision not necessary possible

= Memory
=  On desktop Intel machines not straightforward
= WB cache, prefetcher, ...
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Perfplot

m Tool to ease the effort of creating performance / roofline plots
m  Modified Intel PCM to allow start / stop measurements

measurement_init(counters); //Array with Mask/Eventnr

for(r = 9; r < nr_repeats; r++){
measurement_start();
/* Sum two arrays */
for(i = 0; i < n; i++)
z[i] = x[i] + y[i];
measurement_stop();

}

measurement_end(); //Dump results to files

m Instrument your code as depicted and link with the modified PCM

15

Perfplot

In collaboration with
®  Ruedi Steinman

® Victoria Caparros Cabezas
= Daniele Spampinato

Available at https://github.com/GeorgOfenbeck/perfplot

Scala scripts to automate
= Compilation and execution in temporary directories
= Retrieving the results and collecting them for plots

Python plot scripts for
= Performance plots
= Roofline plots
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