
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

How to Write Fast Numerical Code
Spring 2013
Lecture: Performance Counters and applying the Roofline Model

Instructor: Markus Püschel

TA: Georg Ofenbeck & Daniele Spampinato

Slides and lecture by Georg Ofenbeck

#define RDTSC(cpu_c) \
ASM VOLATILE ("rdtsc" : "=a" ((cpu_c).int32.lo),"=d"((cpu_c).int32.hi))

Read Time Step Counter

 “Read time step counter” instruction to read Invariant TSC

 Monotonically increasing counter, wrap around > 10y

 Stored in a “Machine Specific Register” (MSR)

 Easily access able counter (dedicated instruction, user mode)

2

CPUID();
RDTSC(start);

/* Sum two arrays */
for(i = 0; i < num_runs; i++)
 z[i] = x[i] + y[i];

RDTSC(end);
CPUID();

#cycles = end - start

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Performance Counters

 All modern processors include performance counters

 Intel Pentium Pro – Intel i3/5/7

 AMD K7 and AMD AMD64

 IBM PPC970, PPC970MP, POWER4+, IBM Cell processors (incl. Sony PS3)

 MIPS: 5K, 20K, 25KF, 34K, 5KC, 74K, …..

 ARM Cortex

 ….

3

ReadCounter(start);

/* Sum two arrays */
for(i = 0; i < num_runs; i++)
 z[i] = x[i] + y[i];

ReadCounter(end);

#counted Events = end - start

Performance Counters

 All modern processors include performance counters

 Intel Pentium Pro – Intel i3/5/7

 AMD K7 and AMD AMD64

 IBM PPC970, PPC970MP, POWER4+, IBM Cell processors (incl. Sony PS3)

 MIPS: 5K, 20K, 25KF, 34K, 5KC, 74K, …..

 ARM Cortex

 ….

4

ReadCounter(start);

/* Sum two arrays */
for(i = 0; i < num_runs; i++)
 z[i] = x[i] + y[i];

ReadCounter(end);

#counted Events = end - start

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Types of Counters (Intel)

 Fixed function counters

 Predefined events that are commonly used

 TSC, instructions retired, core clock cycles, …

 General purpose performance counters

 can be programmed to follow a specific event

5 Intel microarchitecture code name Sandy Bridge Pipeline Functionality

Types of Counters (Intel)

 Fixed function counters

 Predefined events that are commonly used

 TSC, instructions retried, core clock cycles, …

 General purpose performance counters

 can be programmed to follow a specific event

6 http://images.ht4u.net/reviews/2009/intel_lynnfield_core_i5_core_i7/core_uncore_nehalem.png

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Types of Counters (Intel)

 Fixed function counters

 Predefined events that are commonly used

 TSC, instructions retried, core clock cycles, …

 General purpose performance counters

 can be programmed to follow a specific event

 Precise-event based sampling

 Trigger interrupt coupled to counter

 Allows to e.g. trace memory access

7

Evolution of Performance Counters

8

• 2 programmable Counters per Core
• 3 fixed Counters per Core
• 40 bit width

• System Wide Counting

• 8 programmable Counters per Core
• 3 fixed Counters per Core
• 2 programmable Counters for LLC Communication per Core
• 2 programmable Counters Uncore
• 1 fixed Counter Uncore
• 48 bit width

• per HW Thread Counting
• “Precise Event Based Sampling”

perfmon version 1 perfmon version 3

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Accessing the Counters

 Perfmon(1-3) defines how to program the counters

 Counters differ between microarchitectures (and in-between)

 To access directly

 Acquire root somehow (MSR access)

 Disable counter in control MSR

 Program events and behaviour you like in config MSR

 Enable counters in control and config MSR

 Check overflow MSR / read value from counter MSR

9

10

Accessing the Counters

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Tool for Counters

 Intel VTune

 Sampling based

 Perf, papi, libpfm4

 Linux only, uncore poorly supported

 Intel PCM

 Intel only, Cross OS, direct access to MSRs

11

Caveats

 Generally many, many, many things that can go wrong

 Example flop counter with perf

12

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

13

Caveats

 General

 Dead code elimination, “smart” compiler, Initialization

 Asynchronous calls

 Alignment

 HW prefetcher

 Timing

 Frequency scaling

 per thread counters don’t capture total runtime

 Flops

 Distinguishing single / double precision not necessary possible

 Memory

 On desktop Intel machines not straightforward

 WB cache, prefetcher, …

14

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Perfplot

 Tool to ease the effort of creating performance / roofline plots

 Modified Intel PCM to allow start / stop measurements

 Instrument your code as depicted and link with the modified PCM

15

measurement_init(counters); //Array with Mask/Eventnr

for(r = 0; r < nr_repeats; r++){
 measurement_start();
 /* Sum two arrays */
 for(i = 0; i < n; i++)
 z[i] = x[i] + y[i];
 measurement_stop();
}

measurement_end(); //Dump results to files

Perfplot

 In collaboration with

 Ruedi Steinman

 Victoria Caparros Cabezas

 Daniele Spampinato

 Available at https://github.com/GeorgOfenbeck/perfplot

 Scala scripts to automate

 Compilation and execution in temporary directories

 Retrieving the results and collecting them for plots

 Python plot scripts for

 Performance plots

 Roofline plots

16

https://github.com/GeorgOfenbeck/perfplot
https://github.com/GeorgOfenbeck/perfplot

