Advanced Systems Lab

Spring 2022

Lecture: Optimizing FFT, FFTW

Instructor: Markus Püschel, Ce Zhang

TA: Joao Rivera, several more

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Fast FFT: Example FFTW Library

www.fftw.org

Frigo and Johnson, FFTW: An Adaptive Software Architecture for the FFT, ICASSP 1998

Frigo, A Fast Fourier Transform Compiler, PLDI 1999

Frigo and Johnson, The Design and Implementation of FFTW3, Proc. IEEE 93(2) 2005

Transform Algorithms

An algorithm for y = Tx is given by a factorization

$$T = T_1 T_2 \cdots T_m$$

Namely, instead of y = Tx we can compute in steps

This reduces the op count only if:

- the T_i are sparse
- m is not too large

Example: Cooley-Tukey Fast Fourier Transform (FFT), size 4

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix} x = \begin{bmatrix} 1 & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & 1 \\ 1 & \cdot & -1 & \cdot \\ \cdot & 1 & \cdot & -1 \end{bmatrix} \begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & 1 & \cdot \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdot & \cdot \\ 1 & -1 & \cdot & \cdot \\ \cdot & \cdot & 1 & 1 \\ \cdot & \cdot & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \end{bmatrix} x$$

$$12 \text{ adds} \qquad 4 \text{ adds} \qquad 1 \text{ mult by i} \qquad 4 \text{ adds} \qquad 0 \text{ ops}$$

Cooley-Tukey FFT, n = 4

Fast Fourier transform (FFT)

4 mults by i

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix} = \begin{bmatrix} 1 & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & 1 \\ 1 & \cdot & -1 & \cdot \\ \cdot & 1 & \cdot & -1 \end{bmatrix} \begin{bmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & i \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdot & \cdot \\ 1 & -1 & \cdot & \cdot \\ \cdot & \cdot & 1 & 1 \\ \cdot & \cdot & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 & -1 \end{bmatrix}$$

Representation using matrix algebra

$$DFT_4 = (DFT_2 \otimes I_2) \operatorname{diag}(1, 1, 1, i)(I_2 \otimes DFT_2) L_2^4$$

Data flow graph (right to left)

2 DFTs of size 2

at stride 2

2 DFTs of size 2

© Markus Püschel Eigenössische Technische Hochschule Zürich Swiss Federal institute of Technology Zurich

Recursive Cooley-Tukey FFT

ı radix

$$\mathrm{DFT}_{km} = (\mathrm{DFT}_k^{\downarrow} \otimes \mathrm{I}_m) T_m^{km} (\mathrm{I}_k \otimes \mathrm{DFT}_m) L_k^{km}$$
 decimation-in-time

$$\mathbf{DFT}_{km} = L_m^{km}(\mathbf{I}_k \otimes \mathbf{DFT}_m)T_m^{km}(\mathbf{DFT}_k \otimes \mathbf{I}_m)$$
 decimation-in-frequency

For powers of two $n = 2^t$ sufficient together with base case

$$\mathbf{DFT}_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

5

FFT, n = 16 (Recursive, Radix 4)

$$DFT_{16} =$$

 $I_4 \otimes \mathrm{DFT}_4$

)

Fast Implementation (≈ FFTW 2.x)

Choice of algorithm

Locality optimization

Constants

Fast basic blocks

Adaptivity

1: Choice of Algorithm

Choose recursive, not iterative

$$DFT_{km} = (DFT_k \otimes I_m) T_m^{km} (I_k \otimes DFT_m) L_k^{km}$$

Radix 2, recursive

Radix 2, iterative

 $(\text{DFT}_2 \otimes I_8) T_8^{16} \Big(I_2 \otimes \Big((\text{DFT}_2 \otimes I_4) T_4^8 \Big(I_2 \otimes \Big((\text{DFT}_2 \otimes I_2) T_2^4 (I_2 \otimes \text{DFT}_2) I_2^4 \Big) \Big) L_2^{16} \\ \qquad \Big((I_1 \otimes \text{DFT}_2 \otimes I_8) D_0^{16} \Big) \Big((I_2 \otimes \text{DFT}_2 \otimes I_4) D_1^{16} \Big) \Big((I_4 \otimes \text{DFT}_2 \otimes I_2) D_2^{16} \Big) \Big((I_8 \otimes \text{DFT}_2 \otimes I_1) D_2^{16} \Big) L_2^{16} \\ \qquad \Big((I_1 \otimes \text{DFT}_2 \otimes I_8) D_0^{16} \Big) \Big((I_2 \otimes \text{DFT}_2 \otimes I_4) D_1^{16} \Big) \Big((I_3 \otimes \text{DFT}_2 \otimes I_2) D_2^{16} \Big) \Big((I_4 \otimes \text{DFT}_2 \otimes I_1) D_2^{16} \Big) L_2^{16} \\ \qquad \Big((I_4 \otimes \text{DFT}_2 \otimes I_4) D_2^{16} \Big) \Big((I_4 \otimes \text{DFT}_2$

First recursive implementation we consider in this course

2: Locality Improvement

Straightforward implementation: 4 steps

- Permute
- Loop recursively calling smaller DFTs (here: 4 of size 4)
- Loop that scales by twiddle factors (diagonal elements of T)
- Loop recursively calling smaller DFTs (here: 4 of size 4)

4 passes through data: bad locality

Better: fuse some steps

9

2: Locality Improvement

 $DFT_n = (DFT_k \otimes I_m) \top_m^n (I_k \otimes DFT_m) \sqcup_k^n$

schematic:

fuse: stage 2

- compute m many DFT_k*D with input stride m and output stride m
- D is part of the diagonal T
- writes to the same location then it reads from → can be done in-place

Interface needed for recursive call:

fuse: stage 1

output stride 1

→ needs to be out-of-place

output vector

Can handle further recursion (just strides change)

10

· compute k many DFT_m with input stride k and

· writes to different location then it reads from

Interface needed for recursive call:

Cannot handle further recursion so in FFTW it is a base case of the recursion


```
// code sketch
void DFT(int n, cpx *x, cpx *y) {
    ...
    int k = choose_dft_radix(n); // ensure k small enough
    int m = n/k;
    for (int i = 0; i < k; ++i)
        DFTrec(m, x + i, y + m*i, k, 1); // implemented as DFT(...) is
    for (int j = 0; j < m; ++j)
        DFTscaled(k, y + j, t[j], m); // always a base case
}</pre>
```

3: Constants

FFT incurs multiplications by roots of unity

In real arithmetic:

Multiplications by sines and cosines, e.g.,

$$y[i] = sin(i \cdot pi/128)*x[i];$$

Very expensive!

Observation: Constants depend only on input size, not on input

Solution: Precompute once and use many times

```
d = DFT_{init}(1024); // init function computes constant table d(x, y); // use many times
```

4: Optimized Basic Blocks

```
// code sketch
void DET(int n, cpx *x, cpx *y) {
   if (use_base_case(n))
        DFTbc(n, x, y); // use base case
   else {
      int k = choose_dft_radix(n); // ensure k <= 32
      int m = n/k;
      for (int i = 0; i < k; ++i)
            DFTrec(m, x + i, y + m*i, k, 1); // implemented as DFT(...) is
      for (int j = 0; j < m; ++j)
            DFTscaled(k, y + j, t[j], m); // always a base case
    }
}</pre>
```

Just like loops can be unrolled, recursions can also be unrolled

Empirical study: Base cases for sizes $n \le 32$ useful (scalar code)

Needs 62 base cases or "codelets" (why?)

- DFTrec, sizes 2–32
- DFTscaled, sizes 2–32

Solution: Codelet generator (codelet = optimized basic block)

FFT codelet Generator

Codelet for DFTrec Codelet for DFTscaled (twiddle codelet)

DAG generator

DAG Simplifier
DAG Scheduler

Small Example DAG

DAG:

One possible unparsing:

```
f0 = x[0] - x[3];

f1 = x[0] + x[3];

f2 = x[1] - x[2];

f3 = x[1] + x[2];

f4 = f1 - f3;

y[0] = f1 + f3;

y[2] = 0.7071067811865476 * f4;

f7 = 0.9238795325112867 * f0;

f8 = 0.3826834323650898 * f2;

y[1] = f7 + f8;

f10 = 0.3826834323650898 * f0;

f11 = (-0.9238795325112867) * f2;

y[3] = f10 + f11;
```

15

DAG Generator

Knows FFTs: Cooley-Tukey, split-radix, Good-Thomas, Rader, represented in sum notation

$$y_{n_2j_1+j_2} = \sum_{k_1=0}^{n_1-1} \left(\omega_n^{j_2k_1}\right) \left(\sum_{k_2=0}^{n_2-1} x_{n_1k_2+k_1} \omega_{n_2}^{j_2k_2}\right) \omega_{n_1}^{j_1k_1}$$

For given n, suitable FFTs are recursively applied to yield n (real) expression trees for outputs $y_0, ..., y_{n-1}$

Trees are fused to an (unoptimized) DAG

Simplifier

Applies:

- Algebraic transformations
- Common subexpression elimination (CSE)
- DFT-specific optimizations

Algebraic transformations

- Simplify mults by 0, 1, -1
- Distributivity law: kx + ky = k(x + y), kx + lx = (k + l)x
 Canonicalization: (x-y), (y-x) to (x-y), -(x-y)

CSE: standard

• E.g., two occurrences of 2x+y: assign new temporary variable

DFT specific optimizations

- All numeric constants are made positive (reduces register pressure)
- CSE also on transposed DAG

17

Scheduler

Determines in which sequence the DAG is unparsed to C (topological sort of the DAG)

Goal: minimize register spills

A 2-power FFT has an operational intensity of I(n) = O(log(C)), where C is the cache size [1]

Implies: For R registers $\Omega(n \log(n)/\log(R))$ register spills

FFTW's scheduler achieves this (asymptotic) bound independent of R

[1] Hong and Kung: "I/O Complexity: The red-blue pebbling game"

Codelet Examples

Notwiddle 2 (DFTrec)

Notwiddle 3 (DFTrec)

Twiddle 3 (DFTscaled)

Notwiddle 32 (DFTrec)

Code style:

- Single static assignment (SSA)
- Scoping (limited scope where variables are defined)

5: Adaptivity

Choices used for platform adaptation

```
// code sketch
void DFT(int n, cpx *x, cpx *y) {
    if (use_base_case(n))
        DFTbc(n, x, y); // use base case
    else {
        int k = choose_dft_radix(n); // ensure k <= 32
        int m = n/k;
        for (int i = 0; i < k; ++i)
            DFTrec(m, x + i, y + m*i, k, 1); // implemented as DFT(...) is
        for (int j = 0; j < m; ++j)
            DFTscaled(k, y + j, t[j], m); // always a base case
    }
}</pre>
```

```
d = DFT_init(1024); // compute constant table; search for best recursion d(x, y); // use many times
```

23

5: Adaptivity

```
d = DFT_init(1024); // compute constant table; search for best recursion d(x, y); // use many times
```

Choices: $\mathrm{DFT}_{km} = (\mathrm{DFT}_k \otimes \mathrm{I}_m) T_m^{km} (\mathrm{I}_k \otimes \mathrm{DFT}_m) L_k^{km}$

Base case = generated codelet is called

Exhaustive search to expensive

Solution: Dynamic programming

FFTW: Further Information

Previous Explanation: FFTW 2.x

FFTW 3.x:

- Support for SIMD/threading
- Flexible interface to handle FFT variants (real/complex, strided access, sine/cosine transforms)
- Complicates significantly the interfaces actually used and increases the size of the search space

	MMM Atlas	Sparse MVM Sparsity/Bebop	DFT FFTW
Cache optimization			
Register optimization			
Optimized basic blocks			
Other optimizations			
Adaptivity			

	MMM Atlas	Sparse MVM Sparsity/Bebop	DFT FFTW	
Cache optimization	Blocking	Blocking (rarely useful)	Recursive FFT, fusion of steps	
Register optimization	Blocking	Blocking (changes sparse format)	Scheduling of small FFTs	
Optimized basic blocks	Unrolling, scalar replacement and SSA, scheduling, simplifications (for FFT)			
Other optimizations	_	-	Precomputation of constants	
Adaptivity	Search: blocking parameters	Search: register blocking size	Search: recursion strategy	