Advanced Systems Lab

Spring 2022

Lecture: Dense linear algebra, LAPACK/BLAS, ATLAS, fast MMM

Instructor: Markus Püschel, Ce Zhang
TA: Joao Rivera, several more

EMH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Overview

Linear algebra software: the path to fast libraries, LAPACK and BLAS
Blocking (BLAS 3): key to performance
Fast MMM

- Algorithms
- ATLAS
- model-based ATLAS

Linear Algebra Algorithms: Examples

Solving systems of linear equations
Eigenvalue problems
Singular value decomposition
LU/Cholesky/QR/... decompositions
... and many others

Make up much of the numerical computation across disciplines (sciences, computer science, data science and machine learning, engineering)

Efficient software is extremely relevant

The Path to Fast Libraries

EISPACK and LINPACK (early 1970s)

- Focus on dense matrices
- Jack Dongarra, Jim Bunch, Cleve Moler, Gilbert Stewart
- LINPACK still the name of the benchmark for the TOP500 (Wiki) list of most powerful supercomputers

Matlab: Invented in the late 1970s by Cleve Moler
Commercialized (MathWorks) in 1984
Motivation: Make LINPACK, EISPACK easy to use
Matlab uses linear algebra libraries but can only call it if you operate with matrices and vectors and do not write your own loops

- A*B (calls MMM routine)
- A|b (calls linear system solver)

The Path to Fast Libraries

EISPACK/LINPACK Problem:

- Implementation vector-based = low operational intensity (e.g., MMM as double loop over scalar products of vectors)
- Low performance on computers with deep memory hierarchy (became apparent in the 80s)

The Path to Fast Libraries
Now there is implementation effort for each processor!
LAPACK (late 1980s, early 1990s)

- Redesign all algorithms to be "block-based" to increase locality
- Jim Demmel, Jack Dongarra et al.

Two-layer architecture

BLAS kernel functions implemented for each computer

Basic Linear Algebra Subroutines (BLAS)

- BLAS 1: vector-vector operations (e.g., vector sum)
$I(n)=$
- BLAS 2: matrix-vector operations (e.g., matrix-vector product)
- BLAS 3: matrix-matrix operations (e.g., MMM)

LAPACK uses BLAS 3 as much as possible

Reminder: Why is BLAS3 so important?

Using BLAS 3 (instead of BLAS 1 or 2) in LAPACK
= blocking
= high operational intensity I
= high performance
Remember (blocking MMM):
$I(n)=$

$O(1)$

$$
O(\sqrt{C})
$$

Small Detour: MMM Complexity?

Usually computed as $C=A B+C$
Cost as computed before

- n^{3} multiplications $+n^{3}$ additions $=2 n^{3}$ floating point operations
- $=O\left(n^{3}\right)$ runtime

Blocking

- Increases locality
- Does not decrease cost

Can we reduce the op count?

Strassen's Algorithm

Strassen, V. "Gaussian Elimination is Not Optimal," Numerische Mathematik 13, 354-356, 1969
Until then, MMM was thought to be $\Theta\left(n^{3}\right)$
Recurrence for flops:

- $T(n)=7 T(n / 2)+9 / 2 n^{2}=7 n^{\log _{2}(7)}-6 n^{2}=O\left(n^{2.808}\right)$
- Later improved: 9/2 \rightarrow 15/4

Fewer ops from $\mathrm{n}=654$, but ...

- Structure more complex \rightarrow runtime crossover much later
- Numerical stability inferior MMM: $\mathbf{2 n}^{\mathbf{3}} /($ Cost Strassen)

Can we reduce more?

MMM Complexity: What is known

Coppersmith, D. and Winograd, S.: "Matrix Multiplication via Arithmetic Programming," J. Symb. Comput. 9, 251-280, 1990

Makes MMM O(n $\left.{ }^{2.376 \ldots}\right)$
Current best (Oct. 2020): O($\left.\mathrm{n}^{2.3728596 . . .}\right) \quad$ Previous best: $\mathrm{O}\left(\mathrm{n}^{2.3728639 \ldots}\right)$
But unpractical

MMM is obviously $\Omega\left(n^{2}\right)$
It could well be close to $\Theta\left(n^{2}\right)$
Practically all code out there uses $2 n^{3}$ flops
Compare this to matrix-vector multiplication:

- Known to be $\Theta\left(n^{2}\right)$ (Winograd), i.e., boring

The Path to Fast Libraries (continued)

ATLAS (late 1990s, inspired by PhiPAC): BLAS generator
Enumerates many implementation variants (blocking etc.) and picks the
fastest (example): advent of so-called autotuning
Enables automatic performance porting
Most important: BLAS3 MMM generator

ATLAS Architecture

- L1Size: size of L1 data cache
- NR: number of registers
- MulAdd: fused multiply-add available?
- L_{*} : latency of FP multiplication

Model-Based ATLAS (2005)

- Search for parameters replaced by model to compute them
- Much faster + provides understanding of what parameters are found

Optimizing MMM

References:

R. Clint Whaley, Antoine Petitet and Jack Dongarra, Automated Empirical Optimization of Software and the ATLAS project, Parallel Computing, 27(1-2):335, 2001
K. Goto and R. van de Geijn, Anatomy of high-performance matrix multiplication, ACM Transactions on mathematical software (TOMS), 34(23), 2008
K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill, Is Search Really Necessary to Generate High-Performance BLAS?, Proceedings of the IEEE, 93(2), pp. 358-386, 2005.
Our presentation is based on this paper

0: Starting Point

Standard triple loop

Most important in practice (based on usage in LAPACK)

- Two out of N, M, K are small
- One out of N, M, K is small
- None is small (e.g., square matrices)

1: Loop Order

```
// Computes C = C + AB
for i = 0:N-1
    for j = 0:M-1
        for k = 0:K-1
            c_ij = c_ij + a_ik*b_kj
```

$\mathrm{i}, \mathrm{j}, \mathrm{k}$ loops can be permuted in any order!

i-j-k: B is reused, good if $M<N(B$ is smaller than $A)$

j-i-k: A is reused, good if $\mathrm{N}<\mathrm{M}$
Other options are inferior, e.g., $\mathrm{k}-\mathrm{i}-\mathrm{j}$:

2: Blocking for Cache

$N_{B}\left\{\begin{array}{l|l|l|l|l|l}\square & \ddots \\ \hline & \ddots \ddots_{\ell}\end{array} * \begin{array}{|l}\square \\ \hline\end{array} \begin{array}{l}\text { Like multiplying matrices } \\ \text { consisting of size } N_{B} \times N_{B} \text { entries } \\ \text { Assume } N_{B} \mid M, N, K\end{array}\right.$

Results in six-fold loop
Formally obtained through loop-tiling and loop exchange

```
for i = 0:N N}:N-
    for j = 0:N NB:M-1
        for k = 0:N N:K-1
            for i' = i:i+NB
                for j' = j:j+N
                for k'= k:k+N
                c_i'j'= c_i'j' + a_i'k'*b_k'j'
```


How to find the best N_{B} ?

ATLAS: uses search over all $N_{B}{ }^{2} \leq \min \left(C, 80^{2}\right) \quad(C=$ measured cache size)
Model: explained next, uses $\mathrm{C}_{1}=$ measured L1 cache size

2: Blocking for Cache

a) Idea: Working set has to fit into cache Easy estimate: | working set | $=3 \mathrm{~N}_{\mathrm{B}}{ }^{2}$ Model: $3 \mathrm{~N}_{\mathrm{B}}{ }^{2} \leq \mathrm{C}_{1}$
b) Closer analysis of working set:

a mini-MMM
c) Take into account cache block size B_{1} :

$$
\left\lceil\frac{N_{B}^{2}}{B_{1}}\right\rceil+\left\lceil\frac{N_{B}}{B_{1}}\right\rceil+1 \leq \frac{C_{1}}{B_{1}}
$$

2: Blocking for Cache

d) Take into account LRU replacement Build a history of accessed elements

$\mathrm{i}=0: \quad a_{0,0} b_{0,0} a_{0,1} b_{1,0} \ldots a_{0, N_{B}-1} b_{N_{B}-1,0} c_{0,0} \quad(\mathrm{j}=0)$
$a_{0,0} b_{0,1} a_{0,1} b_{1,1} \ldots a_{0, N_{B}-1} b_{N_{B}-1,1} c_{0,1} \quad(\mathrm{j}=1)$
$a_{0,0} b_{0, N_{B}-1} a_{0,1} b_{1, N_{B}-1} \ldots a_{0, N_{B}-1} b_{N_{B}-1, N_{B}-1} c_{0, N_{B}-1} \quad\left(\mathrm{j}=\mathrm{N}_{\mathrm{B}}-1\right)$
Corresponding history:

$$
\begin{aligned}
& b_{0,0} b_{1,0} \ldots b_{N_{B}-1,0} c_{0,0} \\
& b_{0,1} b_{1,1} \ldots b_{N_{B}-1,1} c_{0,1} \\
& \ldots \\
& a_{0,0} b_{0, N_{B}-1} a_{0,1} b_{1, N_{B}-1} \ldots a_{0, N_{B}-1} b_{N_{B}-1, N_{B}-1} c_{0, N_{B}-1}
\end{aligned}
$$

Observations:

- All of b has to fit for next iteration $(i=1)$
- When $i=1$, row 1 of a will not cleanly replace row 0 of a
- When $\mathrm{i}=1$, elements of c will not cleanly replace previous elements of c

2: Blocking for Cache

d) Take into account LRU replacement History ($\mathrm{i}=0$):

$b_{0,0} b_{1,0} \ldots b_{N_{B}-1,0} c_{0,0}$
$b_{0,1} b_{1,1} \ldots b_{N_{B}-1,1} c_{0,1}$
$a_{0,0} b_{0, N_{B}-1} a_{0,1} b_{1, N_{B}-1} \ldots a_{0, N_{B}-1} b_{N_{B}-1, N_{B}-1} c_{0, N_{B}-1}$
Observations:

- All of b has to fit for next iteration ($\mathrm{i}=1$)
- When $i=1$, row 1 of a will not cleanly replace row 0 of a
- When $i=1$, elements of c will not cleanly replace previous elements of c

This has to fit:

- Entire b
- 2 rows of a
- 1 row of c

$$
\left\lceil\frac{N_{B}^{2}}{B_{1}}\right\rceil+3\left\lceil\frac{N_{B}}{B_{1}}\right\rceil+1 \leq \frac{C_{1}}{B_{1}}
$$

- 1 element of c

2: Blocking for Cache

e) Take into account blocking for registers (next optimization)

$$
\left\lceil\frac{N_{B}^{2}}{B_{1}}\right\rceil+3\left\lceil\frac{N_{B} M_{U}}{B_{1}}\right\rceil+\left\lceil\frac{M_{U} N_{U}}{B_{1}}\right\rceil \leq \frac{C_{1}}{B_{1}}
$$

3: Blocking for Registers

Blocking mini-MMMs into micro-MMMs for registers revisits the question of loop order:
i-j-k:

For fixed i, j: 2n operations

- n independent mults
- n dependent adds
k-i-j:

For fixed $\mathrm{k}: 2 \mathrm{n}^{2}$ operations

- n^{2} independent mults
- n^{2} independent adds Better ILP (but larger working set)

Result: k-i-j loop order for micro-MMMs

3: Blocking for Registers

4: Basic Block Optimizations

```
for i = 0:N N:N-1
    for j = 0:N N:M-1
        for k = 0:N N:K-1
        for i' = i:M}\mp@subsup{M}{U}{\prime}:i+\mp@subsup{N}{B}{}-
            for j' = j:N}:
                for k' = k:K}:k+\mp@subsup{N}{B}{}-
                for k'\prime= k':\mp@subsup{k}{}{\prime}+\mp@subsup{k}{u}{\prime}-1
                for i" = i':i'+MM-
                for j'\prime= j': j'+N
                        c_i"j" = c_i"j'" + a_i"'k"*b_k"j"
```

Unroll micro-MMMs
Scalar replacement
Loads from c ($\mathrm{M}_{\mathrm{U}} \mathrm{N}_{\mathrm{U}}$ many) at 1
Loads from a and $b\left(M_{U}+N_{U}\right.$ many) at 2
Requires $M_{U}+N_{U}+M_{U} N_{U}$ scalar variables
Example of ATLAS-generated code

5: Other optimizations

Skewing: separate dependent add-mults for better ILP
Software pipelining: move load from one iteration to previous iteration to high load latency (a form of prefetching)

Buffering to avoid TLB misses (later)

Remaining Details

Register renaming and the refined model for $x 86$
TLB-related optimizations

Dependencies

Read-after-write (RAW) or true dependency

$$
\begin{array}{lll}
\text { W } & r_{1}=r_{3}+r_{4} & \\
\text { nothing can be done } \\
R & r_{2}=2 r_{1} & \text { no ILP }
\end{array}
$$

Write after read (WAR) or antidependency

$$
\begin{array}{llll}
R & r_{1}=r_{2}+r_{3} & \text { dependencyonly by } & r_{1}=r_{2}+r_{3} \\
\text { W } & r_{2}=r_{4}+r_{5} & \text { name } \rightarrow \text { rename } & r=r_{4}+r_{5}
\end{array} \text { now ILP }
$$

Write after write (WAW) or output dependency

Resolving WAR by Renaming

$\begin{array}{lllll}R & r_{1}=r_{2}+r_{3} & \text { dependencyonly by } & r_{1}=r_{2}+r_{3} \\ \text { W } & r_{2}=r_{4}+r_{5} & \text { name } \rightarrow \text { rename } & r=r_{4}+r_{5}\end{array}$ now ILP

Renaming can be done at three levels:
C source code (= you rename): use SSA style (next slide)

Scalar Replacement + SSA

How to avoid WAR and WAW in your basic block source code
Solution: Single static assignment (SSA) code:

- Each variable is assigned exactly once

```
<more>
s266 = (t287 - t285);
s267 = (t282 + t286);
s267 = (t282 + t286);
s269 = (t284 + t288);
s270 = (t284 - t288);
s271 = (0.5*(t271 + t280));
s272 = (0.5*(t271 - t280));
s273 = (0.5* ((t281 + t283) - (t285 + t287)));
s274 = (0.5* (s265 - s266));
s274 = (0.5*(s265 - s266));
t289 = ((9.0*s272) + (5.4*s273));
t290 = ((5.4*s272) + (12.6*s273));
t291 = ((1.8*s271) + (1.2*s274));
t292 = ((1.2*s271) + (2.4*s274));
a122 = (1.8*(t269 - t278));
a123 = (1.8*s267);
a124 = (1.8*s269);
t293 = ((a122 - a123) + a124);
a125 = (1.8*(t267 - t276)).
t294 = (a125 + a123 + a124);
t295 = ((a125 - a122) + (3.6*s267));
t296 = (a122 + a125 + (3.6*s269));
<more>
```


Resolving WAR by Renaming

| R | $r_{1}=r_{2}+r_{3}$ | dependencyonly by | $r_{1}=r_{2}+r_{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| W | $r_{2}=r_{4}+r_{5}$ | name \rightarrow rename | $r=r_{4}+r_{5}$ | now ILP

Renaming can be done at three levels:
C source code (= you rename)
Compiler: Uses a different register upon register allocation, $r=r_{6}$
Hardware (if supported): dynamic register renaming

- Requires a separation of architectural and physical registers
- Requires more physical than architectural registers

Register Renaming

Hardware manages mapping architectural \rightarrow physical registers
Each logical register has several associated physical registers
Hence: more instances of each r_{i} can be created
Used in superscalar architectures (e.g., Intel Core) to increase ILP by dynamically resolving WAR/WAW dependencies

Micro-MMM Standard Model

$M U^{*} N U+M U+N U \leq N R-\operatorname{ceil}((L x+1) / 2)$
Core (NR = 16): $M U=2, N U=3$

Code sketch ($\mathrm{KU}=1$)

```
rc1 = c[0,0], ..., rc6 = c[1,2] // 6 registers
loop over k {
        load a // 2 registers
        load b // 3 registers
        compute // 6 independent mults, 6 independent adds, reuse a and b
}
c[0,0] = rc1, ..., c[1,2] = rc6
```

But on x86 that's not what the search found

Extended Model (x86)

Set $M U=1, N U=N R-2=14$

Code sketch (KU = 1)

```
rc1 = c[0], ..., rc14 = c[13] // 14 registers
loop over k {
    load a
        // 1 register
    <rb = b[1] // 1 register
{rb = rb*a // mult (two-operand)
lrc1 = rc1 + rb // add (two-operand)
{rb = b[2] // reuse register (WAR: register renaming resolves it)
{rb = rb*a
rc2 = rc2 + rb
}
c[0] = rc1, ..., c[13] = rc14
```


Summary:

- no reuse in a and b
+ larger tile size available for c since for b only one register is used

Visualization of What Seems to Happen

reuse in a, b, c

reuse in c

Experiments

Unleashed: Not generated = handwritten contributed mini-MMM code

Refined model for computing register tiles on x86

Blocking by model is for L1 cache

graph: Pingali, Yotov, Cornell U.

Remaining Details

Register renaming and the refined model for x86
TLB-related optimizations

Virtual Memory System (Core Family)

The processor works with virtual addresses

All caches work with physical addresses
Both address spaces are organized in pages
Page size: 4 KB (can be changed to 2 MB and even 1 GB in OS settings)
Address translation: virtual address \rightarrow physical address

Virtual/Physical Addresses

Processor: virtual addresses
Caches: physical addresses
Page size $=4 \mathrm{~KB}$

VPN: virtual page number
PPN: physical page number

L1 cache lookup can start concurrently with address translation!
How would Intel (likely) increase the L1 cache size?

Address Translation

Uses a cache called translation lookaside buffer (TLB)
Skylake:
Level 1 ITLB (instructions): 128 entries
DTLB (data): 64 entries
Level 2 Shared (STLB): 1536 entries

Miss Penalties:

- DTLB hit: no penalty
- DTLB miss, STLB hit: few cycles penalty
- STLB miss: can be very expensive

Impact on Performance

Repeatedly accessing a working set spread over too many pages yields TLB misses and can result in a significant slowdown.

Example Skylake: STLB $=1536$
A computation that repeatedly accesses a working set of 2048 doubles spread over 2048 pages will cause STLB misses.

How much space will this working set occupy in cache (assume no conflicts)? 2048 * 64 B $=128$ KB (fits into L2 cache)

Example MMM

We are looking for parts in the working set that are spread out in memory:

- Block row of a: contiguous
- All of b: contiguous
- Block of c : if $M>512$, then spread over N_{B} pages

Typically, N_{B} is in the 10 s , so no problem

Example MMM, contd.

Interface BLAS function: $\operatorname{dgemm}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{N}, \mathrm{K}, \mathrm{M}, ~ l d a, ~ l d b, ~ l d c)$

Leading dimensions: Enable use on matrices inside matrices

Assume Ida, Idb, Idc > 512:

- Block row of a: spread over $\geq N_{B}$ pages
- All of b: spread over $\geq K$ pages
- Block of c: Spread over $\geq N_{B}$ pages

Example MMM, contd.

Resulting code (sketch):

```
// all of b reused: possible copy to contiguous memory
for i = 0:N 
    // block row of a reused: possibly copy
    for j = 0:NB:M-1
        // block of c reused: possibly copy
        for k = 0:NB:K-1
```


Fast MMM: Principles

Optimization for memory hierarchy

- Blocking for cache
- Blocking for registers

Basic block optimizations

- Loop order for ILP
- Unrolling + scalar replacement
- Scheduling \& software pipelining

Optimizations for virtual memory

- Buffering (copying spread-out data into contiguous memory)

Autotuning

- Search over parameters (ATLAS)
- Model to estimate parameters (Model-based ATLAS)

All high performance MMM libraries do some of these (but possibly in slightly different ways)

Path to Fast Libraries

LAPACK	static higher level functions
BLAS	kernel functions generated for each computer

The advent of SIMD vector instructions (SSE, 1999) made ATLAS obsolete
The advent of multicore systems (ca. 2005) required a redesign of LAPACK (just parallelizing BLAS is suboptimal)

Recently, BLAS interface needs to be extended to handle higher-order tensor operations (used in machine learning)

Automatic generation of blocked algorithms, alternatives to LAPACK (FLAME)
Small scale linear algebra requires quite different optimizations
(see program generator SLinGen/LGen)

Lessons Learned

Implementing even a relatively simple function with optimal performance can be highly nontrivial

Autotuning can find solutions that a human would not think of implementing Understanding which choices lead to the fastest code can be very difficult MMM is a great case study, touches on many performance-relevant issues

Most domains are not studied as carefully as dense linear algebra

