Operational Intensity Again

Definition: Given a program P, assume cold (empty) cache

Operational intensity: $I(n) = \frac{W(n)}{Q(n)}$

- Vector sum: $y = x + y$ \(O(1) \)
- Matrix-vector product: $y = Ax$ \(O(1) \)
- Fast Fourier transform \(O(\log(n)) \)
- Matrix-matrix product: $C = AB + C$ \(O(n) \) \(O(\log(y)) \) (not explained)

Asymptotic bounds on $I(n)$

Cache lecture
$\gamma =$ size LLC (last level cache)
Known to be optimal
Compute/Memory Bound

A function/piece of code is:

- **Compute bound** if it has high operational intensity
- **Memory bound** if it has low operational intensity

The roofline model makes this more precise

Roofline model/plot ([Williams et al. 2008](#))

Platform model

- **mem**: Bandwidth β (bytes/cycle)
- **cache**: raw bandwidth from manual measurement
 - unattainable (maybe 60% is)
 - **Stream benchmark** may be conservative

Each with peak performance π (flops/cycle)

Algorithm/program model (n is the input size)

- **Work**: $W(n)$ (flops)
- **Data movement**: $Q(n)$ (bytes)
- **Runtime**: $T(n)$ (cycles)

Derived

- **Operational intensity**: $I(n) = W(n)/Q(n)$ (flops/byte)
- **Performance**: $P(n) = W(n)/T(n)$ (flops/cycle)

Example: one core, $\pi = 2$, $\beta = 1$, no SIMD

- Bound based on β: $\beta \geq Q/T = (W/T)/(W/Q) = P/I$
- In log scale: $\log_2(P) \leq \log_2(\beta) + \log_2(I)$

Roofline Plots

What happens if we introduce 4-way SIMD?

If β does not change: more programs become memory bound

Roofline Plots

What if a program has an uneven mix of operations (e.g., 20% mults and 80% adds)?

A tighter roof may hold for this program (depends on units and ports)
Roofline Measurements

Example plots follow

Estimate operational intensity $I = \frac{W}{Q}$ (cold cache):

- **daxpy**: $y = \alpha x + y$
 $W = 2n$
 $Q = 3n$ doubles = $24n$ bytes
 $I = \frac{1}{12}$

- **dgemv**: $y = Ax + y$
 $W = 2n^2$
 $Q = n^2$ doubles = $8n^2$ bytes
 $I = \frac{1}{4}$

- **dgemm**: $C = AB + C$
 $W = 2n^3$
 $Q \geq 4n^2$ doubles = $32n^2$ bytes
 $I \leq \frac{n}{16}$

Note:

- For **daxpy** and **dgemv**, Q is determined by compulsory misses.
- For **dgemm**, more misses than compulsory misses occur for larger sizes. If $3n^2 \leq \gamma$ (cache size), equality should hold above.

What happens when we go to parallel code?
Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, parallel
Cold cache

What happens when we measure with warm cache?

Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, sequential
Warm cache
Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Various MMM
Cold cache

Generalized Roofline Model

Website and tool: https://acl.inf.ethz.ch/research/ERM/

Summary

Roofline plots distinguish between memory and compute bound
Can be used on for back-of-the-envelope computations on paper
Measurements difficult (performance counters) but doable
Interesting insights: use in your project!