
© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Advanced Systems Lab
Spring 2022
Lecture: Memory hierarchy, locality, caches

Instructor: Markus Püschel, Ce Zhang

TA: Joao Rivera, several more

Organization

Temporal and spatial locality

Memory hierarchy

Caches

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010
Part of these slides are adapted from the course associated with this book

2

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Problem: Processor-Memory Bottleneck

3

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus bandwidth

doubled every 36 months

Core i7 Skylake:
Peak performance:
2 AVX three operand (FMA) ops/cycles
consumes up to 192 Bytes/cycle

Core i7 Skylake:
Bandwidth
16 Bytes/cycle

Solution: Caches/Memory hierarchy

Typical Memory Hierarchy

4

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

on-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from
L1 cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

1 Core

Abstracted Microarchitecture: Example Core i7 Skylake (2015)
Throughput (tp) is measured in doubles/cycle. For example: 4. Numbers are for loading into registers.
Latency (lat) is measured in cycles
1 double floating point (FP) = 8 bytes
fma = fused multiply-add
Rectangles not to scale

Hard disk
≥ 0.5 TB

FP add

FP mul

int ALU

load

store

Main
Memory

(RAM)
64 GB max

L2 cache
256 KB
4-way
64B CB

L1
Icache

L1
Dcache

16 FP
register

internal
registers

instruction
decoder

instruction pool
(up to 224 “in flight”)

execution
units

CISC ops

RISC
μops

issue
8 μops/

cycle

lat: 4
tp: 12 =
8 ld + 4 st

lat: 12
tp: 8

lat: ~215
tp: 2

lat: millions
tp: ~1/50

Memory hierarchy:
• Registers
• L1 cache
• L2 cache
• L3 cache
• Main memory
• Hard disk

out of order execution
superscalar

© Markus Püschel
Computer ScienceSource: Intel manual (chapter 2), http://www.7-cpu.com/cpu/Skylake.html

CB = cache block

depends
on hard

disk
technology,

I/O
interconnect

FP fma

logic/
shuffle

Core i7-6700 Skylake:
4 cores, 8 threads
3.4 GHz
(4 GHz max turbo freq)
2 DDR4 channels 2400 MHz RAM

Core #1, L1, L2

Core #2, L1, L2

Core #3, L1, L2

Core #4, L1, L2

L3

L3

L3

L3

ring interconnect

core uncore

double FP:
max scalar tp:
2 fmas/cycle =
2 adds/cycle and
2 mults/cycle

max vector tp (AVX)
2 vfmas/cycle = 8 fmas/cycle =
8 adds/cycle and
8 mults/cycle

both:
32 KB
8-way
64B CB

Shared
L3 cache

8 MB
16-way
64B CB

lat: 42
tp: 4

ISA

processor die

cache latencies are to CPU,
i.e., they don’t add

Why Caches Work: Locality

Locality: Programs tend to use data and instructions with addresses near
or equal to those they have used recently
History of locality

Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

Spatial locality:

Items with nearby addresses tend
to be referenced close together in time

6

memory

memory

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.7-cpu.com/cpu/Skylake.html
http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Example: Locality?

Data:

 Temporal: sum referenced in each iteration

 Spatial: array a[] accessed consecutively

Instructions:

 Temporal: loops cycle through the same instructions

 Spatial: instructions referenced in sequence

Being able to assess the locality of code is a crucial skill for a performance
programmer

7

sum = 0;
for (i = 0; i < n; i++)
sum += a[i];

return sum;

Locality Example #1

8

int sum_array_rows(double a[M][N])
{
int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += a[i][j];

return sum;
}

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Locality Example #2

9

How to improve locality?int sum_array_3d(double a[K][M][N])
{
int i, j, k, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
for (k = 0; k < K; k++)
sum += a[k][i][j];

return sum;
}

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

8 1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0

4
1

1
2

1
2

0
1

2
8

1
3

6
1

4
4

1
5

2
1

6
0

1
6

8
1

7
6

1
8

4
1

9
2

2
0

0
2

0
8

2
1

6
2

2
4

2
3

2
2

4
0

2
4

8
2

5
6

i-j-k

Loop order k-i-j

Performance [flops/cycle]

= M = N = K

CPU: Intel(R) Core(TM) i7-4980HQ CPU @ 2.80GHz
gcc: Apple LLVM version 8.0.0 (clang-800.0.42.1)
flags: -O3 -fno-vectorize

Operational Intensity Again

Definition: Given a program P, assume cold (empty) cache

Examples: Determine asymptotic bounds on I(n)

 Vector sum: y = x + y

 Matrix-vector product: y = Ax

 Fast Fourier transform

 Matrix-matrix product: C = AB + C

10

O(1)

O(1)

O(log(n))

O(n)

Operational intensity: I(n) =
W(n)

Q(n)

#flops (input size n)

#bytes transferred cache ↔ memory
(for input size n)

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Compute/Memory Bound

A function/piece of code is:

 Compute bound if it has high operational intensity

 Memory bound if it has low operational intensity

Relationship between operational intensity and locality?

 They are closely related

 Operational intensity only describes the boundary last level cache/memory

11

Effects

12

0

5

10

15

20

25

30

35

40

45

50

0 1'000 2'000 3'000 4'000 5'000 6'000 7'000 8'000 9'000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double)
Gflop/s

0

5

10

15

20

25

30

16 32 64 128 256 512 1'024 2'048 4'096 8'192 16'384 32'768 65'536 131'072 262'144

input size

.

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single)
Gflop/s

MMM: I(n) = O(n)FFT: I(n) = O(log(n))

Up to 80-90% peak
Performance can be maintained
outside LLC
Cache miss time compensated/hidden
by computation

Up to 40-50% peak
Performance drop outside last level cache (LLC)
Most time spent transferring data

dark gray = outside LLC

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Cache

Definition: Computer memory with short access time used for the storage
of frequently or recently used instructions or data

Naturally supports temporal locality

Spatial locality is supported by transferring data in blocks

 Core family: one block = 64 B = 8 doubles

13

Main
Memory

CPU Cache

Types of Cache Misses (The 3 C’s)

Compulsory (cold) miss

Occurs on first access to a block

Capacity miss

Occurs when working set is larger than the cache

Conflict miss

Conflict misses occur when the cache is large enough, but multiple data objects
all map to the same slot

Not a clean classification but still useful

14

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Direct Mapped Cache

How would you build a Cache?

15

0000

0001

0010

0011

0100

0101

0110

0111

8 Byte DRAM 2 Byte Cache

CPU

(1) Give me 0011

(2) Give me 0011

(3) Here is 0011

Direct Mapped Cache

How would you build a Cache?

16

0000

0001

0010

0011

0100

0101

0110

0111

8 Byte DRAM 2 Byte Cache

CPU

(1) Give me 0011

(2) Give me 0011

(3) Here is 0011

(4) Here is 0011 (5) Give me 0011

(6) Problem – How can we know this block was 0011?

Challenge 1. We need to do “bookkeeping” for every entry of cache
(such that we know what it is next time we use it)

Challenge 2. “Bookkeeping” better to be cheap, both for space and
computational efficiency (e.g., in the above example, having a 4-bit
address along with every 1 Byte data is probably a very bad idea)

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Direct Mapped Cache

How would you build a Cache?

17

0000

0001

0010

0011

0100

0101

0110

0111

8 Byte DRAM Design 1: Cache

Problem 1: not very efficient –
4 bits / 1 byte 0100

0111 Problem 2: no spatial locality

Direct Mapped Cache

How would you build a Cache?

18

0000

0001

0010

0011

0100

0101

0110

0111

8 Byte DRAM Design 1: Cache

Problem 1: not very efficient –
4 bits / 1 byte 0100

0111

Design 2: Cache

Problem 2: no spatial locality

010

0 1

More efficient – 3 bits / 2 byte

Better spatial locality

011

Problem 3: How to find out
whether e.g., 0010 is in cache?
– Scan all entries!

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Direct Mapped Cache

How would you build a Cache?

19

0000

0001

0010

0011

0100

0101

0110

0111

8 Byte DRAM Design 1: Cache

Problem 1: not very efficient –
4 bits / 1 byte 0100

0110

Design 2: Cache

Problem 2: no spatial locality

010

0 1

More efficient – 3 bits / 2 byte

Better spatial locality

011

Problem 3: How to find out
whether e.g., 0010 is in cache?
– Scan all entries!

Design 3: Cache

0 1 last bit

0

1

2nd last bit

01

00

More efficient – 2 bits / 2 byte

Easy to check: take 0010, 2nd last bit =
1, find the second “cache entry”, check
the first 2 bits stored there.

Direct Mapped Cache

20

Cache

16bits e.g., 32 bytes

Memory Address (e.g., 32 bits)

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Direct Mapped Cache

21

Cache

16bits e.g., 32 bytes

Memory Address

N
u

m
b

e
r o

f se
ts SData SizeTag Size

32 bit address -> Tag Size (# bits) stored in TAG

+ log2 S bits encodes as a “row” in the cache

+ log2 Data bits encodes position in the data block

Cache Structure

Example 1: direct mapped cache (E = 1, B = 4 doubles, S = 8)

22

B = block size =
32 byte = 4 doubles

S = number
of sets = 8

address of a double (64 bit) 3

lsb

=000

2

e.g., 01

3

e.g., 101

tag

Direct mapped cache:
every address yields a unique location in cache

Tag: needs to be stored in cache with the value
to allow reconstruction of address

Always entire blocks (here 32 bytes) are loaded into cache

What is the set of all addresses
that are mapped to this location?

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Example (S=8, E=1)

23

int sum_array_rows(double a[16][16])
{
int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i][j];

return sum;
}

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])
{
int i, j;
double sum = 0;

for (j = 0; j < 16; j++)
for (i = 0; i < 16; i++)
sum += a[i][j];

return sum;
}

Ignore the variables sum, i, j

How is the cache filled?

[0][0] [0][1] [0][2] [0][3]

[0][4] [0][5] [0][6] [0][7]

[0][8] [0][9] [0][10] [0][11]

[0][12] [0][13] [0][14] [0][15]

[1][0] [1][1] [1][2] [1][3]

[1][4] [1][5] [1][6] [1][7]

[1][8] [1][9] [1][10] [1][11]

[1][12] [1][13] [1][14] [1][15]

[2][0] [2][1] [2][2] [2][3]

Example (S=8, E=1)

24

int sum_array_rows(double a[16][16])
{
int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i][j];

return sum;
}

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])
{
int i, j;
double sum = 0;

for (j = 0; j < 16; j++)
for (i = 0; i < 16; i++)
sum += a[i][j];

return sum;
}

Ignore the variables sum, i, j

How is the cache filled?

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

[3][0] [3][1] [3][2] [3][3]

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Direct Mapped Cache

25

Cache

16bits 32 bytes

Memory Address

How big is this cache? – 64K

How to make it bigger?

(1) Bigger data block – Yes, but this cannot continue forever

(1) Add more of these “building blocks”

Cache Structure: E-way set-associative cache

Add associativity (E = 2, B = 4 doubles, S = 8)

26

address of a double (64 bit) 3

lsb

=000

2

e.g., 01

3

e.g., 101

tag

E-way set-associative cache:
every value has E possible locations

Usually, least recently used (LRU) is replaced

Always entire blocks (here 32 bytes) are loaded into cache

2 possibilities

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Example (S=4, E=2)

27

int sum_array_rows(double a[16][16])
{
int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i][j];

return sum;
}

int sum_array_cols(double a[16][16])
{
int i, j;
double sum = 0;

for (j = 0; j < 16; j++)
for (i = 0; i < 16; i++)
sum += a[i][j];

return sum;
}

assume: cold (empty) cache,
a[0][0] goes here

Ignore the variables sum, i, j

How is the cache filled?

[0][0] [0][1] [0][2] [0][3]

[0][4] [0][5] [0][6] [0][7]

[0][8] [0][9] [0][10] [0][11]

[0][12] [0][13] [0][14] [0][15]

[1][0] [1][1] [1][2] [1][3]

[1][4] [1][5] [1][6] [1][7]

[1][8] [1][9] [1][10] [1][11]

[1][12] [1][13] [1][14] [1][15]

[2][0] [2][1] [2][2] [2][3]

Example (S=4, E=2)

28

int sum_array_rows(double a[16][16])
{
int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i][j];

return sum;
}

int sum_array_cols(double a[16][16])
{
int i, j;
double sum = 0;

for (j = 0; j < 16; j++)
for (i = 0; i < 16; i++)
sum += a[i][j];

return sum;
}

assume: cold (empty) cache,
a[0][0] goes here

Ignore the variables sum, i, j

How is the cache filled?

[0][0] [0][1] [0][2] [0][3] [1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

General Cache Organization (S, E, B)

29

E = 2e lines per set
E = associativity, E=1: direct mapped

S = 2s sets

set

line

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

Cache size:
S x E x B data bytes

Cache Read

30

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set

• Check if any line in set
has matching tag

• Yes + line valid: hit

• Locate data starting
at offset

E = 2e lines per set
E = associativity, E=1: direct mapped

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Terminology

Direct mapped cache:

 Cache with E = 1

 Means every block from memory has a unique location in cache

Fully associative cache

 Cache with S = 1 (i.e., maximal E)

 Means every block from memory can be mapped to any location in cache

 In practice to expensive to build

 One can view the register file as a fully associative cache

LRU (least recently used) replacement

 when selecting which block should be replaced (happens only for E > 1), the
least recently used one is chosen

31

Small Example, Part 1

32

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code
for j = 0:1
for i = 0:7
access(x[i])

Access pattern:
Hit/Miss:

0123456701234567

MHMHMHMHMHMHMHMH

Result: 8 misses, 8 hits
Spatial locality:
Temporal locality:

x[0]

yes
no

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Small Example, Part 2

33

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code
for j = 0:1
for i = 0:2:7
access(x[i])

for i = 1:2:7
access(x[i])

Access pattern:
Hit/Miss:

0246135702461357

MMMMMMMMMMMMMMMM

Result: 16 misses
Spatial locality:
Temporal locality:

x[0]

no
no

Small Example, Part 3

34

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code
for j = 0:1
for k = 0:1
for i = 0:3
access(x[i+4j])

Access pattern:
Hit/Miss:

0123012345674567

MHMHHHHHMHMHHHHH

Result: 4 misses, 12 hits (is optimal, why?)
Spatial locality:
Temporal locality:

x[0]

yes
yes

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Cache Performance Metrics
Miss rate

 Fraction of memory references not found in cache: misses / accesses
= 1 – hit rate

Hit time

 Time to deliver a block in the cache to the processor

 Haswell:
4 clock cycles for L1
11 clock cycles for L2

Miss penalty

 Additional time required because of a miss

 Haswell: about 100 cycles for L3 miss

35

What about writes?

What to do on a write-hit?

 Write-through: write immediately to memory

 Write-back: defer write to memory until replacement of line

What to do on a write-miss?

 Write-allocate: load into cache, update line in cache

 No-write-allocate: writes immediately to memory

36

Write-back/write-allocate (Core)

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: load

2: updateupdate

Write-through/no-write-allocate

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: update

2: update update

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Example:

z = x + y, x, y, z vector of doubles of length n

assume they fit jointly in cache + cold cache

memory traffic Q(n):

operational intensity I(n)?

37

4n doubles = 32n bytes

W(n) = n flops, so
I(n) = W(n)/Q(n) = 1/32

Locality Optimization: Blocking

Example: MMM

38

void mmm(double *A, double *B, double *C, int n) {

for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)

for(int k = 0; k < n; k++)
C[n*i + j] = C[n*i + j] + A[n*i + k] * B[n*k + j]; }

* =

A B C

Cij
row i

column j

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Cache Miss Analysis MMM

39

Assumptions: cache size γ << n, cache block: 8 doubles, only 1 cache

C = A*B, all n x n

Triple loop:

* = * =

1. entry: n/8 + n = 9n/8 cache misses

2. entry: same

Total: n2 * 9n/8 = 9n3/8

Blocked (six-fold loop): block size b, 8 divides b

1. block: nb/8 + nb/8 = nb/4 cache misses

2. block: same

Total: (n/b)2 * nb/4 = n3/(4b)

b
b

How to choose b?
The above analysis assumes that the multiplication of b x b blocks can be done with only
compulsory misses. This requires 3b2 ≤ γ.

b = sqrt(γ/3) which yields about sqrt(3)/(4*sqrt(γ)) * n3 cache misses, a gain of ≈ 2.6*sqrt(γ)
I(n) = O(sqrt(γ))

Experiment

40

Cascade Lake (Intel® Xeon® Silver 4210)
GCC 9.3.0
Flags: -O3 -ffast-math [-fno-tree-vectorize] -march=native

mmm

mmm blocking

0 400 800 1'200 1'600 2'000

0

0.5

1

1.5

2

Vectorization disabled

Performance [F/C]

mmm vec

mmm blocking vec

0 400 800 1'200 1'600 2'000

0

0.5

1

1.5

2

Vectorization enabled

Performance [F/C]

L1 cache: 4096 doubles
Block size b = 32

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

On Previous Slide

Refine the analysis by including the misses incurred by C

Compute the operational intensity in both cases

Try an analogous analysis for matrix-vector multiplication

41

The Killer: Two-Power Strided Working Sets

42

% t = 1,2,4,8,… a 2-power
% size W of working set: W = n/t
for (i = 0; i < n; i += t)
access(x[i])

for (i = 0; i < n; i += t)
access(x[i])

Cache: E = 2, B = 4 doubles

x[0]

t = 1: t = 2: t = 4: t = 8: t ≥ 4S:

Spatial locality
Temporal locality:
if W ≤ C

Some spatial locality
Temporal locality:
if W ≤ C/2

No spatial locality
Temporal locality:
if W ≤ C/4

No spatial locality
Temporal locality:
if W ≤ C/8

No spatial locality
Temporal locality:
if W ≤ 2

Working with a two-power-strided working set is like having a smaller cache

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

The Killer: Where Can It Occur?

Accessing two-power size 2D arrays (e.g., images) columnwise

 2d Transforms

 Stencil computations

 Correlations

Various transform algorithms

 Fast Fourier transform

 Wavelet transforms

 Filter banks

43

Example from Before

44

int sum_array_3d(double a[K][M][N])
{
int i, j, k, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
for (k = 0; k < K; k++)
sum += a[k][i][j];

return sum;
}

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

20
0

20
8

21
6

22
4

23
2

24
0

24
8

25
6

i-j-k

Loop order k-i-j

Performance [flops/cycle]

= M = N = K

CPU: Intel(R) Core(TM) i7-4980HQ CPU @ 2.80GHz
gcc: Apple LLVM version 8.0.0 (clang-800.0.42.1)
flags: -O3 -fno-vectorize

2-power strides

© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Summary

It is important to assess temporal and spatial locality in the code

Cache structure is determined by three parameters

 block size

 number of sets

 associativity

You should be able to roughly simulate a computation on paper

Blocking to improve locality

Two-power strides can be problematic (conflict misses)

45

