
© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Advanced Systems Lab
Spring 2022
Lecture: Benchmarking

Instructor: Markus Püschel, Ce Zhang

TA: Joao Rivera, several more

Overview

Measuring performance & benchmarking

References:

 Section 3.2 in: Chellappa, Franchetti, Püschel: How To Write Fast Numerical 
Code: A Small Introduction, GTTSE 2008

 Hoefler and Belli: Scientific Benchmarking of Parallel Computing Systems, 
Supercomputing 2015

 Whaley and Castaldo: Achieving accurate and context-sensitive timing for 
code optimization, Software: Practice and Experience 2008

2

http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
https://htor.inf.ethz.ch/publications/img/hoefler-scientific-benchmarking.pdf
http://www.csc.lsu.edu/~whaley/papers/timing_SPE08.pdf


© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Benchmarking

First: Validate/test your code!

Measure runtime (in [s] or [cycles]) for a set of relevant input sizes

 seconds: actual runtime

 cycles: abstracts from CPU frequency

Usually: Compute and show performance (in [flop/s] or [flop/cycle])

Careful: Better performance ≠ better runtime (why?)

 Op count could differ

 Never show in one plot performance of two algorithms with substantially 
different op count

3

How to Measure Runtime?

C clock()

 process specific, low resolution, very portable

gettimeofday

 measures wall clock time, higher resolution, somewhat portable

Performance counter (e.g., TSC on Intel)

 measures cycles (i.e., also wall clock time), highest resolution, not portable

Careful:

 measure only what you want to measure 

 ensure proper machine state 
(e.g., cold or warm cache = input data is or is not in cache)

 measure enough repetitions

 check how reproducible; if not reproducible: fix it

Getting proper measurements is not easy at all!

4



© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

Problems with Timing
Too few iterations: inaccurate non-reproducible timing

Too many iterations: system events interfere

Machine is under load: produces side effects

Multiple timings performed on the same machine

Bad data alignment of input/output vectors: 

 align to multiples of cache line (on Core: address is divisible by 64)

 sometimes aligning to page boundaries (address divisible by 4096) makes sense

Machine was not rebooted for a long time: state of operating system causes problems

Computation is input data dependent: choose representative input data

Computation is inplace and data grows until an exception is triggered 
(computation is done with NaNs)

You work on a computer that has dynamic frequency scaling (e.g., turbo boost)

Always check whether timings make sense, are reproducible 5

Benchmarks in Writing

Specify experimental setup

 platform

 compiler and version

 compiler flags used

Plot: Very readable

 Title, x-label, y-label should be there

 Fonts large enough

 Enough contrast (e.g., no yellow on white please)

 Proper number format

No: 13.254687; yes: 13.25

No: 2.0345e-05 s; yes: 20.3 μs

No: 100000 B; maybe: 100,000 B; yes: 100 KB

6



© Markus Püschel
Computer Science

Advanced Systems Lab
Spring 2022

0

1

2

3

4

5

6

7

4 5 6 7 8 9 10 11 12 13

Spiral SSE

Intel MKL interl.

Spiral C

Spiral C vect

G
fl

o
p

/s
Performance of DFT 2

n
on Pentium 4, 2.53 GHz

log2(input size)

What’s Suboptimal?

7

Ugly font

Legends cause long
decoding time

Fully saturated color

Grid lines compete with data lines
(poor layering)

http://funnyimagewebsite.blogspot.ch/

0

1

2

3

4

5

6

7

4 5 6 7 8 9 10 11 12 13

Performance of DFT 2
n

on Pentium 4, 2.53 GHz
[Gflop/s]

log2(input size)

Spiral SSE

Intel MKL

Spiral scalar

Spiral vectorized

Horizontal
y-label

Left alignment
Attractive font (sans serif, avoid Arial)
Calibri, Helvetica, Gill Sans MT, …

Main line
possibly 

emphasized
(red, thicker)No y-axis

(superfluous)

Background/grid
inverted for 

better layering

No legend; makes decoding easier

8


