Non-Negative Matrix Factorization

Algorithm

Inputs: nonnegative $m \times n$ matrix V, r output dimension
Outputs: non-negative matrices W, H of sizes $m \times r$ and $r \times n$, such that $V=W H$
Steps:

1. Initialize W and H (various methods exist, see references).
2. Update the matrices with the following steps until convergence:

$$
\begin{gathered}
H_{[i, j]}^{n+1}=H_{[i, j]}^{n} \frac{\left(\left(W^{n}\right)^{T} V\right)_{[i, j]}}{\left(\left(W^{n}\right)^{T} W^{n} H^{n}\right)_{[i, j]}} \\
W_{[i, j]}^{n+1}=W_{[i, j]}^{n} \frac{\left(V\left(H^{n+1}\right)^{T}\right)_{[i, j]}}{\left(W^{n} H^{n+1}\left(H^{n+1}\right)^{T}\right)_{[i, j]}}
\end{gathered}
$$

Implementation

Baseline 1: a straightforward implementation with loops
Baseline 2: replacing the loops with BLAS library calls
Optimized version: The same matrices are used in multiple steps of the update rules, re-ordering, tiling and unrolling the computation can result in much better data re-use than what is possible with the BLAS interface.

References:
https://en.wikipedia.org/wiki/Non-negative_matrix_factorization\#Algorithms https://www.cs.cornell.edu/~bindel/class/sjtu-summer19/lec/2019-05-30.pdf https://arxiv.org/pdf/2109.03874v1.pdf

