Overview

Memory bound computations
Sparse linear algebra, OSKI
Memory Bound Computation

Data movement, not computation, is the bottleneck

Typically: Computations with operational intensity $I(n) = O(1)$

The computer
- Memory bandwidth
- Peak performance

The algorithm
- Dependencies

How it is implemented
- Good/bad locality
- SIMD or not

How the measurement is done
- Cold or warm cache
- In which cache data resides
- See next slide
Example: BLAS 1, Warm Data & Code

$z = x + y$ on Core i7 (Nehalem, one core, no SSE), icc 12.0 /O2 /fp:fast /Qipo

Sparse Linear Algebra

Sparse matrix-vector multiplication (MVM)

Sparsity/Bebop/OSKI

References:

- Sparsity/Bebop website
Sparse Linear Algebra

Very different characteristics from dense linear algebra (LAPACK etc.)

Applications:
- finite element methods
- PDE solving
- physical/chemical simulation (e.g., fluid dynamics)
- linear programming
- scheduling
- signal processing (e.g., filters)
- ...

Core building block: Sparse MVM

Sparse MVM (SMVM)

\[y = y + Ax, \text{ A sparse but known (below A is square)} \]

Typically executed many times for fixed A

What is reused (possible temporal locality)?

Upper bound on operational intensity?

\[I(n) \leq \frac{2K}{8(K+3n)} \leq \frac{1}{4} \]
Storage of Sparse Matrices

Standard storage is obviously inefficient: Many zeros are stored
- *Unnecessary operations*
- *Unnecessary data movement*
- *Bad operational intensity*

Several sparse storage formats are available

Popular for performance: Compressed sparse row (CSR) format

CSR

Assumptions:
- \(A \) is \(m \times n \)
- \(K \) nonzero entries

Storage:
- \(K \) doubles + \((K+m+1)\) ints = \(\Theta(\max(K, m))\)
- Typically: \(\Theta(K)\)
Sparse MVM Using CSR

\[y = y + Ax \]

```c
void smvm(int m, const double* values, const int* col_idx,
            const int* row_start, double* x, double* y)
{
    int i, j;
    double d;

    /* loop over m rows */
    for (i = 0; i < m; i++) {
        d = y[i]; /* scalar replacement since reused */

        /* loop over non-zero elements in row i */
        for (j = row_start[i]; j < row_start[i + 1]; j++)
            d += values[j] * x[col_idx[j]];
        y[i] = d;
    }
}
```

CSR + sparse MVM: Advantages?

CSR

Advantages:

- Only nonzero values are stored
- All three arrays for A (\(\text{values}, \text{col_idx}, \text{row_start}\)) accessed consecutively in MVM (good spatial locality)
- Good temporal locality with respect to \(y\)

Disadvantages:

- Insertion into A is costly
- Poor temporal locality with respect to \(x\)
Impact of Matrix Sparsity on Performance

Adressing overhead (dense MVM vs. dense MVM in CSR):
- ~ 2x slower (example only)

Fundamental difference between MVM and sparse MVM (SMVM):
- Sparse MVM is input dependent (sparsity pattern of A)
- Changing the order of computation (blocking) requires changing the data structure (CSR)

Bebop/Sparsity: SMVM Optimizations

Idea: Blocking for registers

Reason: Reuse x to reduce memory traffic

Execution: Block SMVM $y = y + Ax$ into micro MVMs
- Block size $r \times c$ becomes a parameter
- Consequence: Change A from CSR to $r \times c$ block-CR (BCSR)

BCSR: Next slide
BCSR (Blocks of Size r x c)

Assumptions:
- A is $m \times n$
- Block size $r \times c$
- $K_{r,c}$ nonzero blocks

A as matrix ($r = c = 2$)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>

A in BCSR ($r = c = 2$):

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b_values</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b_col_idx</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>b_row_start</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Storage:
- $rcK_{r,c}$ doubles + $(K_{r,c} + m/r + 1)$ ints = $\Theta(rcK_{r,c})$
- $rcK_{r,c} \geq K$

Sparse MVM Using 2 x 2 BCSR

```c
void smvm_2x2(int bm, const int *b_row_start, const int *b_col_idx, const double *b_values, double *x, double *y)
{
    int i, j;
    double d0, d1, c0, c1;

    /* loop over bm block rows */
    for (i = 0; i < bm; i++) {
        d0 = y[2*i];  /* scalar replacement since reused */
        d1 = y[2*i+1];

        /* dense micro MVM */
        for (j = b_row_start[i]; j < b_row_start[i+1]; j++) {
            c0 = x[2*b_col_idx[j]+0];  /* scalar replacement since reused */
            c1 = x[2*b_col_idx[j]+1];
            d0 += b_values[0] * c0;
            d1 += b_values[2] * c0;
            d0 += b_values[1] * c1;
            d1 += b_values[3] * c1;
        }
        y[2*i] = d0;
        y[2*i+1] = d1;
    }
}
```
BCSR

Advantages:
- Temporal locality with respect to x and y
- Reduced storage for indexes

Disadvantages:
- Storage for values of A increased (zeros added)
- Computational overhead (also due to zeros)

Main factors (since memory bound):
- Plus: increased temporal locality on x + reduced index storage
 = reduced memory traffic
- Minus: more zeros = increased memory traffic

Which Block Size \((r \times c)\) is Optimal?

Example:
- 20,000 x 20,000 matrix
 (only part shown)
- Perfect 8 x 8 block structure
- No overhead when blocked
 \(r \times c\), with \(r, c\) divides 8

source: R. Vuduc, LLNL
How to Find the Best Blocking for given A?

Best block size is hard to predict (see previous slide)

Solution 1: Searching over all $r \times c$ within a range, e.g., $1 \leq r,c \leq 12$
- Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs
- Total cost: 1440 SMVMs
- Too expensive

Solution 2: Model
- Estimate the gain through blocking
- Estimate the loss through blocking
- Pick best ratio

Model: Example

Gain by blocking (dense MVM)

Overhead (average) by blocking

\[
\frac{16}{9} = 1.77
\]

\[
\frac{1.4}{1.77} = 0.79 \text{ (no gain)}
\]

Model: Doing that for all } r \text{ and } c \text{ and picking best

Model

Goal: find best \(r \times c \) for \(y = y + Ax \)

Gain through \(r \times c \) blocking (estimation):

\[
G_{r,c} = \frac{\text{dense MVM performance in } r \times c \text{ BCSR}}{\text{dense MVM performance in CSR}}
\]

dependent on machine, independent of sparse matrix

Overhead through \(r \times c \) blocking (estimation)

scan part of matrix \(A \)

\[
O_{r,c} = \frac{\text{number of matrix values in } r \times c \text{ BCSR}}{\text{number of matrix values in CSR}}
\]

independent of machine, dependent on sparse matrix

Expected gain: \(G_{r,c} / O_{r,c} \)
Gain from Blocking (Dense Matrix in BCSR)

- machine dependent
- hard to predict

Typical Result (assumes cold cache)

Runtime lower bound through compulsory misses!

Principles in Bebop/Sparsity Optimization

Optimization for memory hierarchy = increasing locality
- Blocking for registers (micro-MVMs)
- Requires change of data structure for A
- Optimizations are input dependent (on sparse structure of A)

Fast basic blocks for small sizes (micro-MVM):
- Unrolling + scalar replacement

Search for the fastest over a relevant set of algorithm/implementation alternatives (parameters r, c)
- Use of performance model (versus measuring runtime) to evaluate expected gain

Different from ATLAS

SMVM: Other Ideas

Cache blocking
Value compression
Index compression
Pattern-based compression
Special scenario: Multiple inputs
Cache Blocking

Idea: divide sparse matrix into blocks of sparse matrices

Experiments:
- Requires very large matrices (x and y do not fit into cache)
- Speed-up up to 2.2x, only for few matrices, with 1x1 BCSR

Value Compression

Situation: Matrix A contains many duplicate values

Idea: Store only unique ones plus index information

A in CSR:

<table>
<thead>
<tr>
<th>values</th>
<th>b</th>
<th>c</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>col_idx</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>row_start</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

A in CSR-VI:

<table>
<thead>
<tr>
<th>values</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>col_idx</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>row_start</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kourtis, Goumas, and Koziris, Improving the Performance of Multithreaded Sparse Matrix-Vector Multiplication using Index and Value Compression, pp. 511-519, ICPP 2008
Index Compression

Situation: Matrix A contains sequences of nonzero entries

Idea: Use special byte code to jointly compress `col_idx` and `row_start`

Coding

- **Row_start**
- **Col_idx**
- **Byte code**

Decoding

```
0: acc = acc + 256 + arg; emit_element(row, col); col = col + 1;
1: col = col + acc + 256 + arg; acc = 0;
emit_element(row, col);
2: col = col + acc + 256 + arg; acc = 0;
emit_element(row, col + 1); col = col + 2;
3: col = col + acc + 256 + arg; acc = 0;
emit_element(row, col);
4: emit_element(row, col + 1);
emit_element(row, col + 2); col = col + 3;
emit_element(row, col);
5: emit_element(row, col + 1); emit_element(row, col + 2);
emit_element(row, col + 3); col = col + 4;
row = row + 1; col = 0;
```

Willcock and Lumsdaine, Accelerating Sparse Matrix Computations via Data Compression, pp. 307-316, ICS 2006

Pattern-Based Compression

Situation: After blocking A, many blocks have the same nonzero pattern

Idea: Use special BCSR format to avoid storing zeros; needs specialized micro-MVM kernel for each pattern

A as matrix

```
<table>
<thead>
<tr>
<th>b</th>
<th>c</th>
<th>0</th>
<th>a</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>c</td>
<td>0</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>
```

Values in 2 x 2 BCSR

```
b c 0 a 0 c 0 0 b b c 0
```

Values in 2 x 2 PBR

```
b c a c b b c
```

+ **Bit string:** 1101 0100 1110

Belgin, Back, and Ribbens, Pattern-based Sparse Matrix Representation for Memory-Efficient SMVM Kernels, pp. 100-109, ICS 2009
Special Scenario: Multiple Inputs

Situation: Compute SMVM $y = y + Ax$ for several independent x

Experiments: up to 9x speedup for 9 vectors

enables blocking across MVMs like MMM