Overview

Measuring performance & benchmarking

References:

- Whaley and Castaldo: *Achieving accurate and context-sensitive timing for code optimization*, *Software: Practice and Experience* 2008
Benchmarking

First: Validate/test your code!

Measure runtime (in [s] or [cycles]) for a set of relevant input sizes
- **seconds**: actual runtime
- **cycles**: abstracts from CPU frequency

Usually: Compute and show performance (in [flop/s] or [flop/cycle])

Careful: Better performance ≠ better runtime (why?)
- Op count could differ
- Never show in one plot performance of two algorithms with substantially different op count

How to Measure Runtime?

C clock()
- **process specific, low resolution, very portable**

gettimeofday
- measures **wall clock time, higher resolution, somewhat portable**

Performance counter (e.g., TSC on Intel)
- measures **cycles (i.e., also wall clock time), highest resolution, not portable**

Careful:
- measure only what you want to measure
- ensure proper machine state
 (e.g., cold or warm cache = input data is or is not in cache)
- measure enough repetitions
- check how reproducible; if not reproducible: fix it

Getting proper measurements is not easy at all!
Problems with Timing

Too few iterations: inaccurate non-reproducible timing

Too many iterations: system events interfere

Machine is under load: produces side effects

Multiple timings performed on the same machine

Bad data alignment of input/output vectors:
 - align to multiples of cache line (on Core: address is divisible by 64)
 - sometimes aligning to page boundaries (address divisible by 4096) makes sense

Machine was not rebooted for a long time: state of operating system causes problems

Computation is input data dependent: choose representative input data

Computation is inplace and data grows until an exception is triggered
(computation is done with NaNs)

You work on a computer that has dynamic frequency scaling (e.g., turbo boost)

Always check whether timings make sense, are reproducible

Benchmarks in Writing

Specify experimental setup
 - platform
 - compiler and version
 - compiler flags used

Plot: Very readable
 - Title, x-label, y-label should be there
 - Fonts large enough
 - Enough contrast (e.g., no yellow on white please)
 - Proper number format
 - No: 13.254687; yes: 13.25
 - No: 2.0345e-05 s; yes: 20.3 µs
 - No: 100000 B; maybe: 100,000 B; yes: 100 KB
What’s Suboptimal?

- Ugly font
- Fully saturated color
- Legends cause long decoding time
- Grid lines compete with data lines (poor layering)

DFT 2^n (single precision) on Pentium 4, 2.53 GHz

Left alignment

Attractive font (sans serif, avoid Arial) Calibri, Helvetica, Gill Sans MT, ...

Horizontal y-label

No y-axis (superfluous)

Main line possibly emphasized (red, thicker)

Background/grid inverted for better layering

No legend; makes decoding easier

DFT 2^n (single precision) on Pentium 4, 2.53 GHz

[GFlop/s]