

Today

Motivation for this course

Organization of this course

3

Model predictive control	Singular-value decomposition
Eigenvalues	Mean shift algorithm for segmentation
LU factorization	Stencil computations
Optimal binary search organization	Displacement based algorithms
Image color conversions	Motion estimation
Image geometry transformations	Multiresolution classifier
Enclosing ball of points	Kalman filter
Metropolis algorithm, Monte Carlo	Object detection
Seam carving	IIR filters
SURF feature detection	Arithmetic for large numbers
Submodular function optimization	Optimal binary search organization
Graph cuts, Edmond-Karps Algorithm	Software defined radio
Gaussian filter	Shortest path problem
Black Scholes option pricing	Feature set for biomedical imaging
Disparity map refinement	Biometrics identification 16

It is very difficult to write the fastest code

- Tuning for memory hierarchy
- Vector instructions
- Efficient parallelization (multiple threads)
- Requires expert knowledge in algorithms, coding, and architecture

Fast code can be large

Can violate "good" software engineering practices

Compilers often can't do the job

- Often intricate changes in the algorithm required
- Optimization blockers
- No good way of evaluating choices

Highest performance is in general non-portable

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

33

Class Participation

I'll start on time

All material I cover goes on the website, but not my verbal explanations

It is important to attend but not obligatory (obviously)

Do ask questions

If you drop the course, please unregister in mystudies

47