
© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Advanced Systems Lab
Spring 2020
Lecture: DSL-based program generation for performance (Spiral)

Instructor: Markus Püschel, Ce Zhang

TA: Joao Rivera, Bojan Karlas, several more

Spiral: DSL-Based Program Generation 
for Performance

 www.spiral.net

 Franz Franchetti, Tze-Meng Low, Thom Popovici, Richard Veras, Daniele G. Spampinato, 
Jeremy Johnson, P, James C. Hoe and José M. F. Moura
SPIRAL: Extreme Performance Portability
Proceedings of the IEEE, special issue on ``From High Level Specification to High 
Performance Code'', Vol. 106, No. 11, 2018

 P, Franz Franchetti and Yevgen Voronenko
Spiral
in Encyclopedia of Parallel Computing, Eds. David Padua, pp. 1920-1933, Springer 2011

 P, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan Singer, Jianxin
Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson 
and Nicholas Rizzolo, 
SPIRAL: Code Generation for DSP Transforms
Proceedings of the IEEE, special issue on «Program Generation, Optimization, and 
Adaptation'', Vol. 93, No. 2, pp. 232- 275, 2005

2

http://www.spiral.net/
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=299
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=146
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=1


© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

The Problem: Example DFT

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT on Intel Core i7 (4 Cores, 2.66 GHz)
Performance [Gflop/s]

Fastest program

 Same number of operations

 Best compiler

12x

35x

Direct implementation

DFT: Analysis

 Compiler doesn’t do it

 Doing by hand: Very tough

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

3x

3x

5x

locality optimization

vectorization

threading



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Our Goal:

Computer writes high performance library code

“click”

Viterbi Decoder

DFT IP Cores

@ www.spiral.net



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Possible Approach:
Capturing algorithm knowledge:
Domain-specific languages (DSLs)

Structural optimization:
Rewriting systems

High performance code style:
Compiler

Decision making for choices:
Machine learning

Organization

 Spiral: Basic system

 Vectorization

 General input size

 Results 

 Final remarks



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Algorithms: Example FFT, n = 4

 SPL (Signal processing language): Mathematical, declarative, point-free

 Divide-and-conquer algorithms = breakdown rules in SPL

Fast Fourier transform (FFT)

Representation using matrix algebra

Decomposition Rules (>200 for >40 Transforms)

Decomposition rules = Algorithm knowledge in Spiral

(from ≈100 publications)

Combining these rules yields many algorithms for every given transform



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

SPL to Code

Correct code: easy fast code: very difficult

Program Generation in Spiral
Transform

C Program

Algorithm
(SPL)

Algorithm
(∑-SPL)

Decomposition rules

void sub(double *y, double *x) {
double f0, f1, f2, f3, f4, f7, f8, f10, f11;

f0 = x[0] - x[3];
f1 = x[0] + x[3];
f2 = x[1] - x[2];
f3 = x[1] + x[2];
f4 = f1 - f3;
y[0] = f1 + f3;
y[2] = 0.7071067811865476 * f4;
f7 = 0.9238795325112867 * f0;

< more lines>

+ search or learning 
for further tuning

parallelization
vectorization

locality 
optimization

basic block
optimizations



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Organization

 Spiral: Basic system

 Vectorization

 General input size

 Results 

 Final remarks

Example: Vectorization in Spiral

 Goal: Translate SPL expressions directly into SIMD code

 Relationship SPL expressions ↔ vectorization? 

one addition
one subtraction

one (4-way) vector addition
one (4-way) vector subtraction



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Step 1: Identify “Good” Vector Constructs

 Vector length: 

 Good (= easily vectorizable) SPL constructs:

 Idea: Convert a given SPL expression into a “good” SPL expression 
through rewriting (structural manipulation)

SPL expressions recursively built from those

base cases

Step 2: Find Manipulation Rules

Manipulation rules = SIMD knowledge in Spiral



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Example

vectorized arithmetic
vectorized data accesses

Sketch for complex ν = 2

18



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Automatically Generate Base Case Library

 Goal: Given instruction set, generate base cases

 Idea: Instructions as matrices + search

y = _mm_unpacklo_ps(x0, x1);

y = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(1,2,1,2));

y = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(3,4,3,4));

No base case

y0 = _mm_unpacklo_ps(x[0], x[1]);
y1 = _mm_shuffle_ps(x0, x1, 

_MM_SHUFFLE(3,4,3,4)); Base case

y0 = _mm_shuffle_ps(x0, x1, 
_MM_SHUFFLE(1,2,1,2));

y1 = _mm_shuffle_ps(x0, x1, 
_MM_SHUFFLE(3,4,3,4));

Same Approach for Different Paradigms
Vectorization:Threading:

GPUs: Verilog for FPGAs:

 Rigorous, correct by construction

 Overcomes compiler limitations



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Organization

 Spiral: Basic system

 Vectorization

 General input size

 Results

 Final remarks

Challenge: General Size Libraries

Challenge:
Library for general input size

DFT(n, x, y) {
…
for(i = …) {

DFT_strided(m, x+mi, y+i, 1, k) 
}
…

}

• Algorithm cannot be fixed

• Recursive code

• Creates many challenges

So far:
Code specialized to fixed input size

DFT_384(x, y) {
…
for(i = …) {
t[2i]   = x[2i] + x[2i+1]
t[2i+1] = x[2i] - x[2i+1]

}
…

}

• Algorithm fixed

• Nonrecursive code



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Challenge: Recursion Steps

 Cooley-Tukey FFT

 Implementation that increases locality (e.g., FFTW 2.x)

void DFT(int n, cpx *y, cpx *x) {
int k = choose_dft_radix(n);
…
for (int i=0; i < k; ++i)
DFTrec(m, y + m*i, x + i, k, 1); 

for (int j=0; j < m; ++j)
DFTscaled(k, y + j, t[j], m);

}

S-SPL : Basic Idea
 Four additional matrix constructs: S, G, S, Perm

 S (sum)     explicit loop
 Gf (gather) load data with index mapping f

 Sf (scatter) store data with index mapping f

 Permf permute data with the index mapping f

 S-SPL formulas = matrix factorizations

Example:



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Find Recursion Step Closure
Voronenko, 2008

Repeat until closure

Recursion Step Closure: Examples

DFT: scalar code (like FFTW 2.x)

DFT: full-fledged (vectorized and parallel code)



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Summary: Complete Automation for Transforms

• Memory hierarchy optimization
Rewriting and search for algorithm selection
Rewriting for loop optimizations

• Vectorization
Rewriting

• Parallelization
Rewriting

• Derivation of library structure
Rewriting
Other methods

fixed input size code

general input size library

Organization

 Spiral: Basic system

 Vectorization

 General input size

 Results 

 Final remarks



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

DFT on Intel Multicore

5MB vectorized, threaded, 
general-size, adaptive librarySpiral

Generating 100s of FFTWs
PhD thesis Voronenko, 2009



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Generating 100s of FFTWs
PhD thesis Voronenko, 2009

Generating 100s of FFTWs
PhD thesis Voronenko, 2009



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Computer generated Functions for Intel IPP 6.0

3984 C functions
1M lines of code

Transforms: DFT (fwd+inv), RDFT (fwd+inv), DCT2, DCT3, DCT4, DHT, WHT
Sizes: 2–64 (DFT, RDFT, DHT); 2-powers (DCTs, WHT)
Precision: single, double
Data type: scalar, SSE, AVX (DFT, DCT), LRB (DFT)

Computer generated

Results: SpiralGen Inc.

Very Large Scale: BG/P

6.4 Tflop/s

32 racks
= 32K node cards 
= 128K cores

2010 HPC Challenge Class I Award, Almasi et al.



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Organization

 Spiral: Basic system

 Vectorization

 General input size

 Results 

 Final remarks

Spiral: Summary

 Spiral: 

Successful approach to automating
the development of computing software

Commercial proof-of-concept

 Key ideas:

Algorithm knowledge: 
Domain specific symbolic representation

Platform knowledge:
Tagged rewrite rules, SIMD specification

void dft64(float  *Y, float  *X) {

__m512 U912, U913, U914, U915,...

__m512  *a2153, *a2155;

a2153 = ((__m512  *) X); s1107 = *(a2153);

s1108 = *((a2153 + 4)); t1323 = _mm512_add_ps(s1107,s1108);

t1324 = _mm512_sub_ps(s1107,s1108);

<many more lines>

U926 = _mm512_swizupconv_r32(…);

s1121 = _mm512_madd231_ps(_mm512_mul_ps(_mm512_mask_or_pi(

_mm512_set_1to16_ps(0.70710678118654757),0xAAAA,a2154,U926),t1341),

_mm512_mask_sub_ps(_mm512_set_1to16_ps(0.70710678118654757),…),

_mm512_swizupconv_r32(t1341,_MM_SWIZ_REG_CDAB));

U927 = _mm512_swizupconv_r32

<many more lines>

}



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Glimpse of other topics …

37

LGen: Generator for Basic Linear Algebra
Spampinato & P, CGO 2014

BLAC

C Program

Algorithm: Tiling decision and propagation
(LL)

Algorithm
(Σ-LL)

void kernel(float *x, float *A, float *B, …) {
float t0_64_0, t0_64_1, t0_64_2, t0_64_3 …;

t0_57_0 = A[0];
t0_56_0 = A[1];
…
t0_59_0 = t0_57_0 + t0_33_0;
t0_63_0 = t0_59_0 * t0_9_0;
t0_59_1 = t0_56_0 + t0_32_0;
t0_60_0 = t0_59_1 * t0_8_0;
< many more lines>

locality 
optimization

code style

code level 
optimization

vectorization



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

LGen: Sample Results

MKL

BTO

MKL

generated
generated

Scala function

PL Support: Example Code Style
Ofenbeck, Rompf, Stojanov, Odersky & P, GPCE 2012

Data flow graph

SPL

def f(x: Array[Double], y: Array[Double]) = {
for (i <- 0 until 2) {
y(2*i)   = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
} 



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

def f(x: Array[Rep[Double]], 
y: Array[Rep[Double]]) = {
for (i <- 0 until 2) {
y(2*i)   = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
} 

t0 = s0 + s1;
t1 = s0 - s1;
t2 = s2 + s3;
t2 = s2 - s3;

def f(x: Rep[Array[Double]], 
y: Rep[Array[Double]]) = {
for (i <- 0 until 2) {
y(2*i)   = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
} 

t0 = x[0];
t1 = x[1];
t2 = t0 + t1;
y[0] = t2;
t3 = t0 - t1;
y[1] = t3;
t4 = x[0];
t5 = x[1];
t6 = t4 + x5;
y[0] = t6;
t7 = t4 – x5;
y[3] = t7;

def f(x: Rep[Array[Double]], 
y: Rep[Array[Double]]) = {
for (i <- 0 until 2: Rep[Range]) {

y(2*i)   = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
} 

for (int i=0; i < 2; i++) 
{

t0 = x[i];
t1 = x[i+1];
t2 = t0 + t1;
y[i] = t2;
t3 = t0 - t1;
y[i+1] = t3;

}

scalarized

unrolled, scalar repl.

looped, scalar repl.

def f(x: Array[Rep[Double]], 
y: Array[Rep[Double]]) = {
for (i <- 0 until 2) {
y(2*i)   = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
} 

t0 = s0 + s1;
t1 = s0 - s1;
t2 = s2 + s3;
t2 = s2 - s3;

def f(x: Rep[Array[Double]], 
y: Rep[Array[Double]]) = {
for (i <- 0 until 2) {
y(2*i)   = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
} 

t0 = x[0];
t1 = x[1];
t2 = t0 + t1;
y[0] = t2;
t3 = t0 - t1;
y[1] = t3;
t4 = x[0];
t5 = x[1];
t6 = t4 + x5;
y[0] = t6;
t7 = t4 – x5;
y[3] = t7;

def f(x: Rep[Array[Double]], 
y: Rep[Array[Double]]) = {
for (i <- 0 until 2: Rep[Range]) {

y(2*i)   = x(i*2) + x(i*2+1)
y(2*i+1) = x(i*2) - x(i*2+1)

}
} 

for (int i=0; i < 2; i++) 
{

t0 = x[i];
t1 = x[i+1];
t2 = t0 + t1;
y[i] = t2;
t3 = t0 - t1;
y[i+1] = t3;

}

scalarized

unrolled, scalar repl.

looped, scalar repl.

def f[L[_],A[_],T](looptype: L, x: A[Array[T]], y: A[Array[T]]) = {
for (i <- 0 until 2: L[Range]) {
y(2*i)  = x(i*2) + x(i*2+1)
y(2*i+1)= x(i*2) - x(i*2+1)

}
} 

Staging enables program generation

Abstracting over code style =
abstracting over staging decisions



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Advanced Systems Lab
Conclusions

35x

Straightforward implementations often underperform 
by an order of magnitude, even if single-threaded



© Markus Püschel
Computer Science

Advanced Systems Lab

Spring 2020

Algorithms

Software

Compilers

Microarchitecture

performance

Algorithms

Software

Compilers

Microarchitecture

Compilers

Performance is different than other software quality features

Research Questions

 How to port performance?

 How to automate the production of fastest numerical code?

 Domain-specific languages

 Rewriting

 Compilers

 Machine Learning

 What program language features help with program generation?

 What environment should be used to build generators?

 How to represent mathematical functionality?

 How to formalize the mapping to fast code?

 How to handle various forms of parallelism?

 How to integrate into standard work flows?


