Advanced Systems Lab
Spring 2020
Lecture: Memory bound computation, sparse linear algebra, OSKI

Instructor: Markus Püschel, Ce Zhang
TA: Joao Rivera, Bojan Karlas, several more

Overview

- Memory bound computations
- Sparse linear algebra, OSKI
Memory Bound Computation

- Data movement, not computation, is the bottleneck
- Typically: Computations with operational intensity \(I(n) = O(1) \)

Memory Bound Or Not? Depends On ...

- The computer
 - Memory bandwidth
 - Peak performance
- How it is implemented
 - Good/bad locality
 - SIMD or not
- How the measurement is done
 - Cold or warm cache
 - In which cache data resides
 - See next slide
Example: BLAS 1, Warm Data & Code

\[z = x + y \text{ on Core i7 (Nehalem, one core, no SSE), } \text{icc 12.0 /O2 /fp:fast /Qipo} \]

Percentage peak performance (peak = 1 add/cycle)

<table>
<thead>
<tr>
<th></th>
<th>L1 cache</th>
<th>L2 cache</th>
<th>L3 cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>peak performance (%)</td>
<td>100</td>
<td>90</td>
<td>80</td>
</tr>
</tbody>
</table>

Guess the cache sizes

Guess the read bandwidths

- 2 doubles/cycle
- 1 double/cycle
- 1/2 double/cycle

sum of vector lengths (working set)

Sparse Linear Algebra

- Sparse matrix-vector multiplication (MVM)
- Sparsity/Bebop/OSKI

References:

- Sparsity/Bebop website
Sparse Linear Algebra

- Very different characteristics from dense linear algebra (LAPACK etc.)

- Applications:
 - finite element methods
 - PDE solving
 - physical/chemical simulation (e.g., fluid dynamics)
 - linear programming
 - scheduling
 - signal processing (e.g., filters)
 - …

- Core building block: Sparse MVM

Sparse MVM (SMVM)

- \(y = y + Ax \), \(A \) sparse but known (below \(A \) is square)

- Typically executed many times for fixed \(A \)

- What is reused (possible temporal locality)?

- Upper bound on operational intensity?
 \[I(n) \leq 2K/8(K + 3n) \leq 1/4 \]
Storage of Sparse Matrices

- Standard storage is obviously inefficient: Many zeros are stored
 - Unnecessary operations
 - Unnecessary data movement
 - Bad operational intensity
- Several sparse storage formats are available
- Popular for performance: Compressed sparse row (CSR) format

CSR

- Assumptions:
 - A is m x n
 - K nonzero entries

<table>
<thead>
<tr>
<th>A as matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A in CSR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>values</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>col_idx</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>row_start</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

- Storage:
 - K doubles + (K+m+1) ints = \(\Theta(\max(K, m))\)
 - Typically: \(\Theta(K)\)
Sparse MVM Using CSR

\[y = y + Ax \]

```c
void smvm(int m, const double* values, const int* col_idx,
          const int* row_start, double* x, double* y)
{
    int i, j;
    double d;

    /* loop over m rows */
    for (i = 0; i < m; i++) {
        d = y[i]; /* scalar replacement since reused */
        /* loop over non-zero elements in row i */
        for (j = row_start[i]; j < row_start[i+1]; j++)
            d += values[j] * x[col_idx[j]];
        y[i] = d;
    }
}
```

CSR + sparse MVM: Advantages?

CSR

- **Advantages:**
 - Only nonzero values are stored
 - All three arrays for A (\texttt{values}, \texttt{col_idx}, \texttt{row_start}) accessed consecutively in MVM (good spatial locality)
 - Good temporal locality with respect to \(y \)

- **Disadvantages:**
 - Insertion into A is costly
 - Poor temporal locality with respect to \(x \)
Impact of Matrix Sparsity on Performance

- Addressing overhead (dense MVM vs. dense MVM in CSR):
 - ~2x slower (example only)

- Fundamental difference between MVM and sparse MVM (SMVM):
 - Sparse MVM is input *dependent* (sparsity pattern of A)
 - Changing the order of computation (blocking) requires changing the data structure (CSR)

Bebop/Sparsity: SMVM Optimizations

- **Idea**: Blocking for registers
- **Reason**: Reuse x to reduce memory traffic
- **Execution**: Block SMVM $y = y + Ax$ into micro MVMs
 - Block size $r \times c$ becomes a parameter
 - Consequence: Change A from CSR to $r \times c$ block-CRS (BCSR)
- **BCSR**: Next slide
BCSR (Blocks of Size r x c)

- **Assumptions:**
 - A is m x n
 - Block size r x c
 - \(K_{r,c} \) nonzero blocks

<table>
<thead>
<tr>
<th>A as matrix (r = c = 2)</th>
<th>A in BCSR (r = c = 2):</th>
</tr>
</thead>
<tbody>
<tr>
<td>b c c</td>
<td>b_values b c 0 a 0 c 0 b b c 0</td>
</tr>
<tr>
<td>a</td>
<td>b_col_idx 0 1 1</td>
</tr>
<tr>
<td>b b</td>
<td>b_row_start 0 2 3</td>
</tr>
<tr>
<td>c</td>
<td>length (rcK_{r,c})</td>
</tr>
<tr>
<td></td>
<td>length (K_{r,c})</td>
</tr>
<tr>
<td></td>
<td>length (m/r+1)</td>
</tr>
</tbody>
</table>

- **Storage:**
 - \(rcK_{r,c} \) doubles + \((K_{r,c} + m/r+1) \) ints = \(\Theta(rcK_{r,c}) \)
 - \(rcK_{r,c} \geq K \)

Sparse MVM Using 2 x 2 BCSR

```c
void smvm_2x2(int bm, const int *b_row_start, const int *b_col_idx, const double *b_values, double *x, double *y) {
    int i, j;
    double d0, d1, c0, c1;

    /* loop over bm block rows */
    for (i = 0; i < bm; i++) {
        d0 = y[2*i]; /* scalar replacement since reused */
        d1 = y[2*i+1];

        /* dense micro MVM */
        for (j = b_row_start[i]; j < b_row_start[i+1]; j++, b_values += 2*2) {
            c0 = x[2*b_col_idx[j]]+0; /* scalar replacement since reused */
            c1 = x[2*b_col_idx[j]]+1;
            d0 += b_values[0] * c0;
            d1 += b_values[2] * c0;
            d0 += b_values[1] * c1;
            d1 += b_values[3] * c1;
        }
        y[2*i+1] = d0;
        y[2*i+1+1] = d1;
    }
}
```
BCSR

- Advantages:
 - Temporal locality with respect to x and y
 - Reduced storage for indexes

- Disadvantages:
 - Storage for values of A increased (zeros added)
 - Computational overhead (also due to zeros)

- Main factors (since memory bound):
 - Plus: increased temporal locality on x + reduced index storage
 = reduced memory traffic
 - Minus: more zeros = increased memory traffic

Which Block Size (r x c) is Optimal?

Example:

- 20,000 x 20,000 matrix (only part shown)
- Perfect 8 x 8 block structure
- No overhead when blocked r x c, with r, c divides 8

source: R. Vuduc, LLNL
Speed-up Through $r \times c$ Blocking

• machine dependent
• hard to predict

How to Find the Best Blocking for given A?

- Best block size is hard to predict (see previous slide)

- **Solution 1:** Searching over all $r \times c$ within a range, e.g., $1 \leq r, c \leq 12$
 - Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs
 - Total cost: 1440 SMVMs
 - Too expensive

- **Solution 2:** Model
 - Estimate the gain through blocking
 - Estimate the loss through blocking
 - Pick best ratio

Model: Example

Gain by blocking (dense MVM)

Overhead (average) by blocking

16/9 = 1.77

1.4

1.4/1.77 = 0.79 (no gain)

Model: Doing that for all r and c and picking best

Model

- **Goal**: find best $r \times c$ for $y = y + Ax$
- **Gain** through $r \times c$ blocking (estimation):
 \[G_{r,c} = \frac{\text{dense MVM performance in } r \times c \text{ BCSR}}{\text{dense MVM performance in CSR}} \]
 dependent on machine, independent of sparse matrix
- **Overhead** through $r \times c$ blocking (estimation)
 scan part of matrix A
 \[O_{r,c} = \frac{\text{number of matrix values in } r \times c \text{ BCSR}}{\text{number of matrix values in CSR}} \]
 independent of machine, dependent on sparse matrix
- **Expected gain**: $G_{r,c}/O_{r,c}$
Gain from Blocking (Dense Matrix in BCSR)

- machine dependent
- hard to predict

Typical Result

Performance Summary — [pentium3-linux-icc]

CSR
BCSR model
BCSR exhaustive search

Analytical upper bound
how obtained?
(blackboard)

Principles in Bebop/Sparsity Optimization

- Optimization for memory hierarchy = increasing locality
 - Blocking for registers (micro-MVMs)
 - Requires change of data structure for A
 - Optimizations are input dependent (on sparse structure of A)
- Fast basic blocks for small sizes (micro-MVM):
 - Unrolling + scalar replacement
- Search for the fastest over a relevant set of algorithm/implementation alternatives (parameters r, c)
 - Use of performance model (versus measuring runtime) to evaluate expected gain

Different from ATLAS

SMVM: Other Ideas

- Cache blocking
- Value compression
- Index compression
- Pattern-based compression
- Special scenario: Multiple inputs
Cache Blocking

- Idea: divide sparse matrix into blocks of sparse matrices

Experiments:
- Requires very large matrices \((x\text{ and } y \text{ do not fit into cache})\)
- Speed-up up to 2.2x, only for few matrices, with 1 x 1 BCSR

Value Compression

- **Situation:** Matrix A contains many duplicate values
- **Idea:** Store only unique ones plus index information

![Diagram showing CSR and CSR-VI formats for A matrix]
Index Compression

- **Situation**: Matrix A contains sequences of nonzero entries
- **Idea**: Use special byte code to jointly compress col_idx and row_start

Coding

> Values in 2 x 2 BCSR

\[
\begin{array}{ccc}
 b & c & 0 \\
 a & b & b \\
 c & &
\end{array}
\]

Decoding

\[
\begin{align*}
0: & \quad \text{acc} = \text{acc} + 256 + \text{arg}: \quad \text{acc} = 0; \\
1: & \quad \text{emit}_\text{element}(\text{row}, \text{col}); \quad \text{col} = \text{col} + 1; \\
2: & \quad \text{col} = \text{col} + \text{acc} + 256 + \text{arg}; \quad \text{acc} = 0; \\
3: & \quad \text{emit}_\text{element}(\text{row}, \text{col} + 1); \quad \text{col} = \text{col} + 2; \\
4: & \quad \text{col} = \text{col} + \text{acc} + 256 + \text{arg}; \quad \text{acc} = 0; \\
5: & \quad \text{emit}_\text{element}(\text{row}, \text{col}); \quad \text{row} = \text{row} + 1; \quad \text{col} = 0; \\
\end{align*}
\]

Pattern-Based Compression

- **Situation**: After blocking A, many blocks have the same nonzero pattern
- **Idea**: Use special BCSR format to avoid storing zeros; needs specialized micro-MVM kernel for each pattern

A as matrix

\[
\begin{array}{ccc}
 b & c & c \\
 a & b & b \\
 c & &
\end{array}
\]

Values in 2 x 2 BCSR

\[
\begin{array}{ccc}
 b & c & 0 \\
 a & b & c \\
 0 & 0 &
\end{array}
\]

Values in 2 x 2 PBR

\[
\begin{array}{cccccc}
 b & c & a & c & b & c \\
+ \text{bit string:} & 1101 & 0100 & 1110
\end{array}
\]

Belgin, Back, and Ribbens, Pattern-based Sparse Matrix Representation for Memory-Efficient SMVM Kernels, pp. 100-109, ICS 2009
Special Scenario: Multiple Inputs

- **Situation:** Compute SMVM $y = y + Ax$ for several independent x
- **Experiments:** up to 9x speedup for 9 vectors