Advanced Systems Lab
Spring 2020

Lecture: Dense linear algebra, LAPACK/BLAS, ATLAS, fast MMM

Instructor: Markus Püschel, Ce Zhang
TA: Joao Rivera, Bojan Karlas, several more

Overview

- Linear algebra software: the path to fast libraries, LAPACK and BLAS
- Blocking (BLAS 3): key to performance
- Fast MMM
 - Algorithms
 - ATLAS
 - model-based ATLAS
Linear Algebra Algorithms: Examples

- Solving systems of linear equations
- Eigenvalue problems
- Singular value decomposition
- LU/Cholesky/QR/… decompositions
- … and many others

- Make up much of the numerical computation across disciplines (sciences, computer science, engineering)
- Efficient software is extremely relevant

The Path to Fast Libraries

- **EISPACK** and **LINPACK** (early 1970s)
 - Jack Dongarra, Jim Bunch, Cleve Moler, Gilbert Stewart
 - LINPACK still the name of the benchmark for the [TOP500 (Wiki)](https://en.wikipedia.org/wiki/List_of_most_powerful_supercomputers) list of most powerful supercomputers

- Matlab: Invented in the late 1970s by Cleve Moler

- Commercialized (MathWorks) in 1984

- Motivation: Make LINPACK, EISPACK easy to use

- Matlab uses linear algebra libraries but can only call it *if you operate with matrices and vectors and do not write your own loops*
 - A*B (calls MMM routine)
 - A\b (calls linear system solver)
The Path to Fast Libraries

- **EISPACK/LINPACK Problem:**
 - Implementation vector-based = low operational intensity
 (e.g., MMM as double loop over scalar products of vectors)
 - Low performance on computers with deep memory hierarchy
 (became apparent in the 80s)

- **LAPACK (late 1980s, early 1990s)**
 - Redesign all algorithms to be “block-based” to increase locality
 - Jim Demmel, Jack Dongarra et al.

- **Two-layer architecture**
 - **LAPACK**
 - static higher level functions
 - **BLAS**
 - kernel functions implemented for each computer

- **Basic Linear Algebra Subroutines (BLAS)**
 - BLAS 1: vector-vector operations (e.g., vector sum)
 - BLAS 2: matrix-vector operations (e.g., matrix-vector product)
 - BLAS 3: matrix-matrix operations (e.g., MMM)

- **LAPACK uses BLAS 3 as much as possible**
Reminder: Why is BLAS3 so important?

- Using BLAS 3 (instead of BLAS 1 or 2) in LAPACK
 - blocking
 - high operational intensity \(I \)
 - high performance

- Remember (blocking MMM):

\[
I(n) = \begin{cases}
O(1) & \text{for } n^3 \\
O(\sqrt{C}) & \text{for } C \text{ columns}
\end{cases}
\]
Small Detour: MMM Complexity?

- Usually computed as $C = AB + C$
- Cost as computed before
 - n^3 multiplications + n^3 additions = $2n^3$ floating point operations
 - $= O(n^3)$ runtime
- Blocking
 - Increases locality
 - Does not decrease cost
- Can we reduce the op count?

Strassen’s Algorithm

- Strassen, V. “Gaussian Elimination is Not Optimal,” *Numerische Mathematik* 13, 354-356, 1969

 Until then, MMM was thought to be $\Theta(n^3)$

- Recurrence for flops:
 - $T(n) = 7T(n/2) + 9/2 n^2 = 7n^\log_2(7) - 6n^2 = O(n^{2.808})$
 - Later improved: $9/2 \rightarrow 15/4$

- Fewer ops from $n = 654$, but ...
 - Structure more complex \rightarrow runtime crossover much later
 - Numerical stability inferior

- Can we reduce more?

![Graph showing MMM: $2n^3/(Cost\ Strassen)$ against $\log_2(n)$ with a crossover at 654]
MMM Complexity: What is known

- Makes MMM $O(n^{2.376})$
- Current best: $O(n^{2.373})$
- But unpractical

- MMM is obviously $\Omega(n^2)$
- It could well be close to $\Theta(n^2)$
- Practically all code out there uses $2n^3$ flops

- Compare this to matrix-vector multiplication:
 - Known to be $\Theta(n^2)$ (Winograd), i.e., boring

The Path to Fast Libraries (continued)

- **ATLAS** (late 1990s, inspired by PhiPAC): BLAS generator
 - Enumerates many implementation variants (blocking etc.) and picks the fastest (example): advent of so-called autotuning
 - Enables automatic performance porting
 - Most important: BLAS3 MMM generator
ATLAS Architecture

Hardware parameters:
- L1Size: size of L1 data cache
- NR: number of registers
- MulAdd: fused multiply-add available?
- L*: latency of FP multiplication

Search parameters:
- for example blocking sizes
- span search space
- specify code
- found by orthogonal line search

Source: Pingali, Yotov, et al., Cornell U.

ATLAS

Model-Based ATLAS (2005)

- Search for parameters replaced by model to compute them
- Much faster + provides understanding of what parameters are found

Source: Pingali, Yotov, et al., Cornell U.
Optimizing MMM

References:

K. Goto and R. van de Geijn, Anatomy of high-performance matrix multiplication, ACM Transactions on mathematical software (TOMS), 34(23), 2008

Our presentation is based on this paper

0: Starting Point

Standard triple loop

```matlab
// Computes c = c + ab
for i = 0:N-1
   for j = 0:M-1
      for k = 0:K-1
         c_ij = c_ij + a_ik*b_kj
```

Most important in practice (based on usage in LAPACK)
- Two out of N, M, K are small
- One out of N, M, K is small
- None is small (e.g., square matrices)
1: Loop Order

// Computes C = C + AB
for i = 0:N-1
 for j = 0:M-1
 for k = 0:K-1
 c_ij = c_ij + a_ik*b_kj

i,j,k loops can be permuted in any order!

\[
\begin{align*}
N \{ \text{row i} & \} \times M \{ \text{column j} \} = C_{ij} \\
i-j-k: & \text{ B is reused, good if } M < N \text{ (B is smaller than A)} \\
 j-i-k: & \text{ A is reused, good if } N < M \\
\text{Other options are inferior, e.g., k-i-j:} & \end{align*}
\]

ATLAS does versioning (code for both variants) Poor temporal locality w.r.t. C

2: Blocking for Cache

Like multiplying matrices consisting of size \(N_B \times N_B\) entries

Assume \(N_B \mid M,N,K\)

Results in six-fold loop
Formally obtained through loop-tiling and loop exchange

\[
\begin{align*}
N_B \{ \text{ } & \} \times \text{ } = \text{ } \\
\text{How to find the best } & \quad \text{ATLAS: uses search over all } N_B^2 \leq C_1 \text{ (cache size)} \\
\text{Model: explained next} & \end{align*}
\]
2: Blocking for Cache

a) Idea: Working set has to fit into cache
Easy estimate: | working set | = 3 \(N_B \)
Model: 3 \(N_B \) \(B \) \(\leq C_1 \)

b) Closer analysis of working set:
\[
N_B^2 + N_B + 1 \leq C_1
\]
all of \(b \) \(\uparrow \) row of a \(\uparrow \) element of c

Model: 3 \(N_B \) \(B \) \(\leq C_1 \)

\[
\left\lfloor \frac{N_B^2}{B_1} \right\rfloor + \left\lfloor \frac{N_B}{B_1} \right\rfloor + 1 \leq C_{1, B_1}
\]

b) Closer analysis of working set:
\[
N_B^2 + N_B + 1 \leq C_1
\]
\(\text{all of } b \) \(\uparrow \) row of a \(\uparrow \) element of c

Model: 3 \(N_B \) \(B \) \(\leq C_1 \)

\[
\left\lfloor \frac{N_B^2}{B_1} \right\rfloor + \left\lfloor \frac{N_B}{B_1} \right\rfloor + 1 \leq C_{1, B_1}
\]

c) Take into account cache block size \(B_1 \):

\[
\left\lfloor \frac{N_B^2}{B_1} \right\rfloor + \left\lfloor \frac{N_B}{B_1} \right\rfloor + 1 \leq C_{1, B_1}
\]

d) Take into account LRU replacement
Build a history of accessed elements

\[
i=0: \quad a_0, b_{i,0,0}, a_0, b_{i,0,1}, \ldots, a_0, b_{i,N_B-1} \quad b_{i,N_B-1,0}, c_{0,0} \quad (j=0)
\]
\[
i=1: \quad a_0, b_{i,1,0}, a_0, b_{i,1,1}, \ldots, a_0, b_{i,N_B-1} \quad b_{i,N_B-1,1}, c_{0,1} \quad (j=1)
\]
\[\ldots\]
\[
\quad a_0, b_{i,N_B-1} \quad a_0, b_{i,N_B-1,1}, \ldots, a_0, b_{i,N_B-1} \quad b_{i,N_B-1,N_B-1} \quad c_{b,0,N_B-1} \quad (j=N_B-1)
\]

Corresponding history:
\[
\quad b_{0,0} \quad b_{0,1} \ldots \quad b_{N_B-1,0} \quad c_{0,0} \\
\quad b_{0,1} \quad b_{0,1} \ldots \quad b_{N_B-1,1} \quad c_{0,1} \\
\ldots
\]
\[
\quad a_0, b_{0,N_B-1} \quad a_0, b_{0,N_B-1,1}, \ldots, a_0, b_{0,N_B-1} \quad b_{0,N_B-1,N_B-1} \quad c_{0,N_B-1}
\]

Observations:
- All of \(b \) has to fit for next iteration \(i = 1 \)
- When \(i = 1 \), row 1 of \(a \) will not cleanly replace row 0 of \(a \)
- When \(i = 1 \), elements of \(c \) will not cleanly replace previous elements of \(c \)
2: Blocking for Cache

d) Take into account LRU replacement

History (i = 0):
\[
\begin{align*}
 b_{0,0} b_{1,0} & \ldots b_{N_b-1,0} c_{0,0} \\
 b_{0,1} b_{1,1} & \ldots b_{N_b-1,1} c_{0,1} \\
 \vdots \\
 a_{0,0} b_{0,N_b-1} & a_{0,1} b_{1,N_b-1} \ldots a_{0,N_b-1} b_{N_b-1,N_b-1} c_{0,N_b-1}
\end{align*}
\]

Observations:
- All of b has to fit for next iteration (i = 1)
- When i = 1, row 1 of a will not cleanly replace row 0 of a
- When i = 1, elements of c will not cleanly replace previous elements of c

This has to fit:
- Entire b
- 2 rows of a
- 1 row of c
- 1 element of c

\[
\left\lfloor \frac{N_b^2}{B_1} \right\rfloor + 3 \left\lfloor \frac{N_b}{B_1} \right\rfloor + 1 \leq C_1
\]

2: Blocking for Cache

e) Take into account blocking for registers (next optimization)

\[
\left\lfloor \frac{N^2}{B_1} \right\rfloor + 3 \left\lfloor \frac{N M_I}{B_1} \right\rfloor + \left\lfloor \frac{M_I N_T}{B_1} \right\rfloor \leq \frac{C_1}{B_1}
\]
3: Blocking for Registers

Blocking mini-MMMs into micro-MMMs for registers revisits the question of loop order:

- \[i-j-k: \] For fixed \(i, j, k \):
 - 2n operations
 - n independent multiplies
 - n dependent adds

- \[k-i-j: \] For fixed \(k \):
 - \(2n^2 \) operations
 - \(n^2 \) independent multiplies
 - \(n^2 \) independent adds

Better ILP (but larger working set)

Result: k-i-j loop order for micro-MMMs

3: Blocking for Registers

```
for i = 0:N
  for j = 0:M
    for k = 0:K
      for i' = i:M
        for j' = j:N
          for k' = k:K
            for k'' = k':k'+K
              for i'' = i':i'+M
                for j'' = j':j'+N
                  \[ c_{i''j''} = c_{i''j''} + a_{i''k''} \cdot b_{k''j''} \]
```

How to find the best \(M_U, N_U, K_U \)?

ATLAS: uses search with bound

\[M_U + N_U + M_U N_U \leq N_R \]

number of registers

size of working set in \(N_L \)

Model: Use largest \(M_U, N_U \) that satisfy this equation and \(M_U = N_U \)
4: Basic Block Optimizations

for i = 0:N-1
for j = 0:M-1
for k = 0:K-1
for i' = i:M
for j' = j:N
for k' = k:K
for i'' = i':i'+M
for j'' = j':j'+N
for k'' = k':k'+K
\[\begin{align*}
c_{i''j''} &= c_{i''j''} + a_{i''k''} * b_{k''j''}
\end{align*}\]

Unroll micro-MMMs
Scalar replacement
Loads from c (M \times N, many) at \(^1\)
Loads from a and b (M + N, many) at \(^2\)
Requires M \times N + M + N scalar variables

Example of ATLAS-generated code

5: Other optimizations

- Skewing: separate dependent add-mults for better ILP
- Software pipelining: move load from one iteration to previous iteration to high load latency (a form of prefetching)
- Buffering to avoid TLB misses (later)
Remaining Details

- Register renaming and the refined model for x86
- TLB-related optimizations

Dependencies

- Read-after-write (RAW) or true dependency

 \[
 \begin{align*}
 W & : r_3 = r_3 + r_4 \\
 R & : r_2 = 2r_1
 \end{align*}
 \]

 nothing can be done
 no ILP

- Write after read (WAR) or antidependency

 \[
 \begin{align*}
 R & : r_1 = r_2 + r_3 \\
 W & : r_2 = r_4 + r_5
 \end{align*}
 \]

 dependency only by name → rename

 \[
 \begin{align*}
 R & : r_1 = r_2 + r_3 \\
 W & : r_2 = r_4 + r_5
 \end{align*}
 \]

 now ILP

- Write after write (WAW) or output dependency

 \[
 \begin{align*}
 W & : r_1 = r_2 + r_3 \\
 \ldots
 \end{align*}
 \]

 dependency only by name → rename

 \[
 \begin{align*}
 W & : r_1 = r_2 + r_3 \\
 \ldots
 \end{align*}
 \]

 now ILP
Resolving WAR by Renaming

Renaming can be done at three levels:

- C source code (= you rename): use SSA style (next slide)

Scalar Replacement + SSA

- How to avoid WAR and WAW in your basic block source code
- Solution: Single static assignment (SSA) code:
 - Each variable is assigned exactly once

```plaintext
s266 = (t287 - t285);
s267 = (t282 + t286);
s268 = (t282 - t286);
s269 = (t284 + t288);
s270 = (t284 - t288);
s271 = (0.5*(t271 + t280));
s272 = (0.5*(t271 - t280));
s273 = (0.5*((t281 + t283) - (t285 + t287)));
s274 = (0.5*(s265 - s266));
t289 = (9.0*s272) + (5.4*s273);
t290 = (5.4*s272) + (12.6*s273);
a122 = (1.8*(t269 - t278));
a123 = (1.8*s267);
a124 = (1.8*s269);
t293 = ((a122 - a123) + a124);
a125 = (1.8*(t267 - t276));
t294 = (a125 + a123 + a124);
t295 = ((a125 - a122) + (3.6*s267));
t296 = (a122 + a125 + (3.6*s269));
```
Resolving WAR by Renaming

Renaming can be done at three levels:

- **C source code (= you rename)**
- **Compiler**: Uses a different register upon register allocation, \(r = r_6 \)
- **Hardware (if supported)**: dynamic register renaming
 - Requires a separation of architectural and physical registers
 - Requires more physical than architectural registers

\[
\begin{align*}
R & \quad r_1 = r_2 + r_3 \\
W & \quad r_2 = r_4 + r_5 \\
\text{dependency only by name → rename} & \quad r_1 = r_2 + r_3 \\
& \quad r = r_4 + r_5 \\
\text{now ILP} & \quad r = r_4 + r_5
\end{align*}
\]

Register Renaming

- Hardware manages mapping architectural → physical registers
- Each logical register has several associated physical registers
- Hence: more instances of each \(r_i \) can be created
- Used in superscalar architectures (e.g., Intel Core) to increase ILP by dynamically resolving WAR/WAW dependencies
Micro-MMM Standard Model

- \[\text{MU*NU} + \text{MU} + \text{NU} \leq \text{NR} - \text{ceil}((\text{Lx}+1)/2) \]
- Core (NR = 16): MU = 2, NU = 3

\[\begin{array}{c|c|c}
\text{a} & \text{b} & \text{c} \\
\end{array} \]

recode in a, b, c

- Code sketch (KU = 1)

```plaintext
rc1 = c[0,0], ..., rc6 = c[1,2] // 6 registers
loop over k {
    load a // 2 registers
    load b // 3 registers
    compute // 6 indep. mults, 6 indep. adds, reuse a and b
}
c[0,0] = rc1, ..., c[1,2] = rc6
```

Extended Model (x86)

- Set MU = 1, NU = NR - 2 = 14

\[\begin{array}{c|c|c}
\text{a} & \text{b} & \text{c} \\
\end{array} \]

recode in c

- Code sketch (KU = 1)

```plaintext
rc1 = c[0], ..., rc14 = c[13] // 14 registers
loop over k {
    load a // 1 register
    rb = b[1] // 1 register
    rb = rb*a // mult (two-operand)
    rc1 = rc1 + rb // add (two-operand)
    rb = b[2] // reuse register (WAR: register renaming resolves it)
    rb = rb*a
    rc2 = rc2 + rb
    ...
}
c[0] = rc1, ..., c[13] = rc14
```

Summary:
- no reuse in a and b
- larger tile size available for c since for b only one register is used
Visualization of What Seems to Happen

\[\begin{array}{c}
2 \quad \bullet \quad b \\
a \end{array} = \begin{array}{c}
2 \times 3
\end{array} \quad \text{reuse in } a, b, c
\]

\[\begin{array}{c}
1 \quad \bullet \quad b \\
a \quad \bullet \quad c
\end{array} = \begin{array}{c}
14
\end{array} \quad \text{reuse in } c
\]

Experiments

- **Unleashed**: Not generated = hand-written contributed code
- **Refined model** for computing register tiles on x86
- Blocking is for L1 cache
- **Result**: Model-based is comparable to search-based (except Itanium)
Remaining Details

- Register renaming and the refined model for x86
- TLB-related optimizations

Virtual Memory System (Core Family)

- The processor works with *virtual addresses*
- All caches work with *physical addresses*
- Both address spaces are organized in pages
- Page size: 4 KB (can be changed to 2 MB and even 1 GB in OS settings)
- Address translation: virtual address \rightarrow physical address
Virtual/Physical Addresses

Processor: virtual addresses
Caches: physical addresses
Page size = 4 KB

L1 Cache lookup can start concurrently with address translation!

Address Translation

- Uses a cache called translation lookaside buffer (TLB)
- Haswell/Skylake:
 - Level 1 ITLB (instructions): 128 entries
 DTLB (data): 64 entries
 - Level 2 Shared: 1024/1536 entries (Haswell/Skylake)
- Miss Penalties:
 - DTLB hit: no penalty
 - DTLB miss, STLB hit: few cycles penalty
 - STLB miss: can be very expensive
Impact on Performance

Repeatedly accessing a working set spread over too many pages yields TLB misses and can result in a significant slowdown.

Example Haswell:
STLB = 1024

A computation that repeatedly accesses a working set of 2048 doubles spread over 2048 pages will cause STLB misses.

How much space will this working set occupy in cache (assume no conflicts)?

2048 * 64 B = 128 KB (fits into L2 cache)

Example MMM

We are looking for parts in the working set that are spread out in memory:

- Block row of a: contiguous
- All of b: contiguous
- Block of c: if M > 512, then spread over N_b pages

Typically, N_b is in the 10s, so no problem
Example MMM, contd.

Interface BLAS function: \texttt{dgemm}(a, b, c, N, K, M, lda, ldb, ldc)

Leading dimensions: Enable use on matrices inside matrices

\begin{center}
\begin{tabular}{ccc}
\hline
\text{lda} & & \text{ldb} \\
\hline
\text{lca} & & \text{lcb} \\
\hline
\end{tabular}
\end{center}

Assume lda, ldb, ldc > 512:

- Block row of a: spread over \(\geq N_B\) pages
- All of b: spread over \(\geq K\) pages
- Block of c: Spread over \(\geq N_B\) pages

So copying to contiguous memory may pay off.

Example MMM, contd.

Resulting code (sketch):

```c
// all of b reused: possible copy
for i = 0:N_B:N-1
  // block row of a reused: possibly copy
  for j = 0:N_B:M-1
    // block of c reused: possibly copy
    for k = 0:N_B:K-1
      ....
```

43

44
Fast MMM: Principles

- Optimization for memory hierarchy
 - Blocking for cache
 - Blocking for registers

- Basic block optimizations
 - Loop order for ILP
 - Unrolling + scalar replacement
 - Scheduling & software pipelining

- Optimizations for virtual memory
 - Buffering (copying spread-out data into contiguous memory)

- Autotuning
 - Search over parameters (ATLAS)
 - Model to estimate parameters (Model-based ATLAS)

- All high performance MMM libraries do some of these (but possibly in slightly different ways)

Path to Fast Libraries

- The advent of SIMD vector instructions (SSE, 1999) made ATLAS obsolete
- The advent of multicore systems (ca. 2005) required a redesign of LAPACK (just parallelizing BLAS is suboptimal)
- Recently, BLAS interface needs to be extended to handle higher-order tensor operations (used in machine learning)
- Automatic generation of blocked algorithms, alternatives to LAPACK (FLAME)
- Program generator for small linear algebra operations (SLinGen/LGen)
Lessons Learned

- Implementing even a relatively simple function with optimal performance can be highly nontrivial
- Autotuning can find solutions that a human would not think of implementing
- Understanding which choices lead to the fastest code can be very difficult
- MMM is a great case study, touches on many performance-relevant issues
- Most domains are not studies as carefully as dense linear algebra