How to Write Fast Numerical Code
Spring 2019

Lecture: Memory bound computation, sparse linear algebra, OSKI

Instructor: Markus Püschel
TA: Tyler Smith, Gagandeep Singh, Alen Stojanov

source: Pingali, Yotov, Cornell U.
Principles

- Optimization for memory hierarchy
 - Blocking for cache
 - Blocking for registers

- Basic block optimizations
 - Loop order for ILP
 - Unrolling + scalar replacement
 - Scheduling & software pipelining

- Optimizations for virtual memory
 - Buffering (copying spread-out data into contiguous memory)

- Autotuning
 - Search over parameters (ATLAS)
 - Model to estimate parameters (Model-based ATLAS)

- All high performance MMM libraries do some of these (but possibly in slightly different ways)

Today

- Memory bound computations
- Sparse linear algebra, OSKI
Memory Bound Computation

- Data movement, not computation, is the bottleneck
- Typically: Computations with operational intensity $I(n) = O(1)$

Memory Bound Or Not? Depends On ...

- The computer
 - Memory bandwidth
 - Peak performance
- How it is implemented
 - Good/bad locality
 - SIMD or not
- How the measurement is done
 - Cold or warm cache
 - In which cache data resides
 - See next slide
Example: BLAS 1, Warm Data & Code

\(z = x + y \) on Core i7 (Nehalem, one core, no SSE), \icc 12.0 /O2 /fp:fast /Qipo

Sparse Linear Algebra

- Sparse matrix-vector multiplication (MVM)
- Sparsity/Bebop/OSKI

References:

- [Sparsity/Bebop](#) website
Sparse Linear Algebra

- Very different characteristics from dense linear algebra (LAPACK etc.)
- Applications:
 - finite element methods
 - PDE solving
 - physical/chemical simulation (e.g., fluid dynamics)
 - linear programming
 - scheduling
 - signal processing (e.g., filters)
 - ...
- Core building block: Sparse MVM

Sparse MVM (SMVM)

- \(y = y + Ax \), \(A \) sparse but known

- Typically executed many times for fixed \(A \)
- What is reused (possible temporal locality)?
- Upper bound on operational intensity?

Storage of Sparse Matrices

- Standard storage is obviously inefficient: Many zeros are stored
 - Unnecessary operations
 - Unnecessary data movement
 - Bad operational intensity
- Several sparse storage formats are available
- Popular for performance: Compressed sparse row (CSR) format
 - blackboard

CSR

- Assumptions:
 - A is m x n
 - K nonzero entries

<table>
<thead>
<tr>
<th>(A) as matrix</th>
<th>(A) in CSR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b) (c) (c)</td>
<td>(b) (c) (c) (a) (b)</td>
</tr>
<tr>
<td>(a)</td>
<td>(0) (1) (3)</td>
</tr>
<tr>
<td>(b) (b)</td>
<td>(3) (1) (2) (3)</td>
</tr>
<tr>
<td>(c)</td>
<td>(c) (2)</td>
</tr>
</tbody>
</table>

- Storage:
 - \(K \) doubles + \((K+m+1)\) ints = \(\Theta(\max(K, m))\)
 - Typically: \(\Theta(K)\)
Sparse MVM Using CSR

\[\mathbf{y} = \mathbf{y} + \mathbf{A} \mathbf{x} \]

```c
void smvm(int m, const double* values, const int* col_idx, const int* row_start, double* x, double* y)
{
    int i, j;
    double d;

    /* loop over m rows */
    for (i = 0; i < m; i++) {
        d = y[i]; /* scalar replacement since reused */

        /* loop over non-zero elements in row i */
        for (j = row_start[i]; j < row_start[i+1]; j++)
            d += values[j] * x[col_idx[j]];
        y[i] = d;
    }
}
```

CSR + sparse MVM: Advantages?

Advantages:
- Only nonzero values are stored
- All three arrays for \(\mathbf{A}\) (values, col_idx, row_start) accessed consecutively in MVM (good spatial locality)
- Good temporal locality with respect to \(\mathbf{y}\)

Disadvantages:
- Insertion into \(\mathbf{A}\) is costly
- Poor temporal locality with respect to \(\mathbf{x}\)
Impact of Matrix Sparsity on Performance

- Adressing overhead (dense MVM vs. dense MVM in CSR):
 - ~ 2x slower (example only)

- Fundamental difference between MVM and sparse MVM (SMVM):
 - Sparse MVM is input dependent (sparsity pattern of A)
 - Changing the order of computation (blocking) requires changing the data structure (CSR)

Bebop/Sparsity: SMVM Optimizations

- **Idea**: Blocking for registers
- **Reason**: Reuse x to reduce memory traffic
- **Execution**: Block SMVM $y = y + Ax$ into micro MVMs
 - Block size $r \times c$ becomes a parameter
 - Consequence: Change A from CSR to $r \times c$ block-CSR (BCSR)
- **BCSR**: Blackboard
BCSR (Blocks of Size $r \times c$)

- **Assumptions:**
 - A is $m \times n$
 - Block size $r \times c$
 - $K_{r,c}$ nonzero blocks

A as matrix ($r = c = 2$)

\[
\begin{array}{ccc}
 b & c & c \\
 a & & \\
 b & b & \\
 c & & \\
\end{array}
\]

A in BCSR ($r = c = 2$):

\[
\begin{array}{ccccccc}
 b _values & b & c & 0 & a & 0 & 0 & b & b & c & 0 \\
b _col_idx & & & & 0 & 1 & 1 & & & & \\
b _row_start & & & & 0 & 2 & 3 & & & & \\
\end{array}
\]

- **Storage:**
 - $rcK_{r,c}$ doubles + ($K_{r,c} + m/r + 1$) ints = $\Theta(rcK_{r,c})$
 - $rcK_{r,c} \geq K$

```
void smvm_2x2(int bm, const int *b_row_start, const int *b_col_idx,
              const double *b_values, double *x, double *y)
{
    int i, j;
    double d0, d1, c0, c1;

    /* loop over bm block rows */
    for (i = 0; i < bm; i++) {
        d0 = y[2*i]; /* scalar replacement since reused */
        d1 = y[2*i+1];

        /* dense micro MVM */
        for (j = b_row_start[i]; j < b_row_start[i+1]; j++) {
            c0 = x[2*b_col_idx[j]+0]; /* scalar replacement since reused */
            c1 = x[2*b_col_idx[j]+1];
            d0 += b_values[j] * c0;
            d1 += b_values[j] * c1;
        }
        y[2*i] = d0;
        y[2*i+1] = d1;
    }
}
```
BCSR

- **Advantages:**
 - Temporal locality with respect to x and y
 - Reduced storage for indexes

- **Disadvantages:**
 - Storage for values of A increased (zeros added)
 - Computational overhead (also due to zeros)

- **Main factors (since memory bound):**
 - **Plus:** increased temporal locality on x + reduced index storage
 = reduced memory traffic
 - **Minus:** more zeros = increased memory traffic

Which Block Size ($r \times c$) is Optimal?

Example:

- 20,000 \times 20,000 matrix (only part shown)
- Perfect 8 \times 8 block structure
- No overhead when blocked $r \times c$, with r, c divides 8

source: R. Vuduc, LLNL
Speed-up Through $r \times c$ Blocking

![Graphs showing speed-up through blocking with machine-dependent and hard to predict characteristics.]

How to Find the Best Blocking for given A?

- Best block size is hard to predict (see previous slide)
- **Solution 1:** Searching over all $r \times c$ within a range, e.g., $1 \leq r, c \leq 12$
 - Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs
 - Total cost: 1440 SMVMs
 - Too expensive
- **Solution 2:** Model
 - Estimate the gain through blocking
 - Estimate the loss through blocking
 - Pick best ratio
Model: Example

Gain by blocking (dense MVM)

Overhead (average) by blocking

\[
\frac{16}{9} = 1.77
\]

\[1.4/1.77 = 0.79 \text{ (no gain)}\]

Model: Doing that for all \(r\) and \(c\) and picking best

Model

- **Goal:** find best \(r \times c\) for \(y = y + Ax\)

- **Gain** through \(r \times c\) blocking (estimation):

\[
G_{r,c} = \frac{\text{dense MVM performance in } r \times c \text{ BCSR}}{\text{dense MVM performance in CSR}}
\]

dependent on machine, independent of sparse matrix

- **Overhead** through \(r \times c\) blocking (estimation)

scan part of matrix \(A\)

\[
O_{r,c} = \frac{\text{number of matrix values in } r \times c \text{ BCSR}}{\text{number of matrix values in CSR}}
\]

independent of machine, dependent on sparse matrix

- **Expected gain:** \(G_{r,c}/O_{r,c}\)
Gain from Blocking (Dense Matrix in BCSR)

- machine dependent
- hard to predict

Typical Result

Performance Summary --- [pentium3-linux-icc]

CSR
BCSR model
BCSR exhaustive search
Analytical upper bound
how obtained?
(blackboard)

Principles in Bebop/Sparsity Optimization

- Optimization for memory hierarchy = increasing locality
 - Blocking for registers (micro-MVMs)
 - Requires change of data structure for \(A \)
 - Optimizations are input dependent (on sparse structure of \(A \))
- Fast basic blocks for small sizes (micro-MVM):
 - Unrolling + scalar replacement
- Search for the fastest over a relevant set of algorithm/implementation alternatives (parameters \(r, c \))
 - Use of performance model (versus measuring runtime) to evaluate expected gain

Different from ATLAS

SMVM: Other Ideas

- Cache blocking
- Value compression
- Index compression
- Pattern-based compression
- Special scenario: Multiple inputs
Cache Blocking

- **Idea:** divide sparse matrix into blocks of sparse matrices

![Diagram of cache blocking]

- **Experiments:**
 - Requires very large matrices (x and y do not fit into cache)
 - Speed-up up to 2.2x, only for few matrices, with 1 x 1 BCSR

Value Compression

- **Situation:** Matrix A contains many duplicate values
- **Idea:** Store only unique ones plus index information

![Values and Indexes](values.png)

A in CSR:

<table>
<thead>
<tr>
<th>values</th>
<th>b</th>
<th>c</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>col_idx</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>row_start</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A in CSR-VI:

<table>
<thead>
<tr>
<th>values</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>col_idx</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>row_start</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kourtis, Goumas, and Koziris, Improving the Performance of Multithreaded Sparse Matrix-Vector Multiplication using Index and Value Compression, pp. 511-519, ICPP 2008
Index Compression

- **Situation:** Matrix A contains sequences of nonzero entries
- **Idea:** Use special byte code to jointly compress col_idx and row_start

Coding

Decoding

0: acc = acc + 256 + arg;
1: col = col + acc + 256 + arg; acc = 0;
emit_element(row, col); col = col + 1;
2: col = col + acc + 256 + arg; acc = 0;
emit_element(row, col);
3: col = col + acc + 256 + arg; acc = 0;
emit_element(row, col); col = col + 1;
emit_element(row, col);
4: col = col + acc + 256 + arg; acc = 0;
emit_element(row, col);
5: row = row + 1; col = 0;

Belgin, Back, and Ribbens, Pattern-based Sparse Matrix Representation for Memory-Efficient SMVM Kernels, pp. 100-109, ICS 2009

Pattern-Based Compression

- **Situation:** After blocking A, many blocks have the same nonzero pattern
- **Idea:** Use special BCSR format to avoid storing zeros; needs specialized micro-MVM kernel for each pattern

Values in 2 x 2 BCSR

\[
\begin{array}{ccc}
 b & c & 0 \\
 0 & a & 0 \\
 0 & b & b \\
 0 & c & c \\
\end{array}
\]

Values in 2 x 2 PBR

\[
\begin{array}{cccc}
 b & c & a & c \\
 b & b & c & b \\
+ bit string: 1101 0100 1110 \\
\end{array}
\]

Belgin, Back, and Ribbens, Pattern-based Sparse Matrix Representation for Memory-Efficient SMVM Kernels, pp. 100-109, ICS 2009
Special scenario: Multiple inputs

- Situation: Compute SMVM \(y = y + Ax \) for several independent \(x \)
- Blackboard
- Experiments:
 up to 9x speedup for 9 vectors