
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

How to Write Fast Numerical Code
Spring 2019
Lecture: Dense linear algebra, LAPACK/BLAS, ATLAS, fast MMM

Instructor: Markus Püschel

TA: Tyler Smith, Gagandeep Singh, Alen Stojanov

Overview

 Linear algebra software: the path to fast libraries, LAPACK and BLAS

 Blocking (BLAS 3): key to performance

 Fast MMM

 Algorithms

 ATLAS

 model-based ATLAS

2



© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

Linear Algebra Algorithms: Examples

 Solving systems of linear equations

 Eigenvalue problems

 Singular value decomposition

 LU/Cholesky/QR/… decompositions

 … and many others

 Make up much of the numerical computation across disciplines 
(sciences, computer science, engineering)

 Efficient software is extremely relevant

3

The Path to Fast Libraries

 EISPACK and LINPACK (early 1970s)
 Jack Dongarra, Jim Bunch, Cleve Moler, Gilbert Stewart

 LINPACK still the name of the benchmark for the TOP500 (Wiki) list of 
most powerful supercomputers

 Problem: 
 Implementation vector-based = low operational intensity

(e.g., MMM as double loop over scalar products of vectors)

 Low performance on computers with deep memory hierarchy 
(became apparent in the 80s)

4

http://www.netlib.org/eispack/
http://www.netlib.org/linpack/
http://www.top500.org/
http://en.wikipedia.org/wiki/TOP500


© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

The Path to Fast Libraries

 LAPACK (late 1980s, early 1990s)
 Redesign all algorithms to be “block-based” to increase locality

 Jim Demmel, Jack Dongarra et al.

 Requires a two layer architecture

 Basic Linear Algebra Subroutines (BLAS)

 BLAS 1: vector-vector operations (e.g., vector sum)

 BLAS 2: matrix-vector operations (e.g., matrix-vector product)

 BLAS 3: matrix-matrix operations (e.g., MMM)

 LAPACK uses BLAS 3 as much as possible

5

LAPACK

BLAS

static higher level functions

kernel functions implemented for each computer

cache
size

Now there is implementation 
effort for each processor!

Reminder: Why is BLAS3 so important?

 Using BLAS 3 (instead of BLAS 1 or 2) in LAPACK
= blocking 
= high operational intensity I 
= high performance

 Remember (blocking MMM):

*=

*=

6

http://www.netlib.org/lapack/
http://www.netlib.org/blas/blasqr.pdf


© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

The Path to Fast Libraries

 Before we continue a little detour

7

Matlab

 Invented in the late 1970s by Cleve Moler

 Commercialized (MathWorks) in 1984

 Motivation: Make LINPACK, EISPACK easy to use

 Matlab uses LAPACK and other libraries but can only call it if you 
operate with matrices and vectors and do not write your own loops

 A*B (calls MMM routine)

 A\b (calls linear system solver)

8



© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

MMM: Complexity?

 Usually computed as C = AB + C

 Cost as computed before

 n3 multiplications + n3 additions = 2n3 floating point operations

 = O(n3) runtime

 Blocking

 Increases locality

 Does not decrease cost

 Can we reduce the op count?

9

Strassen’s Algorithm
 Strassen, V. "Gaussian Elimination is Not Optimal," Numerische

Mathematik 13, 354-356, 1969
Until then, MMM was thought to be Θ(n3)

 Recurrence for flops: 

 T(n) = 7T(n/2) + 9/2 n2 = 7nlog
2

(7) – 6n2 = O(n2.808)

 Later improved: 9/2 → 15/4

 Fewer ops from n = 654, but …

 Structure more complex → runtime crossover much later

 Numerical stability inferior

 Can we reduce more?

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20

MMM: Cost by definition/Cost Strassen

log2(n)

crossover: 654

10



© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

MMM Complexity: What is known

 Coppersmith, D. and Winograd, S.: "Matrix Multiplication via 
Arithmetic Programming," J. Symb. Comput. 9, 251-280, 1990

 Makes MMM is O(n2.376)

 Current best: O(n2.373)

 But unpractical

 MMM is obviously Ω(n2)

 It could well be close to Θ(n2)

 Practically all code out there uses 2n3 flops

 Compare this to matrix-vector multiplication: 
 Known to be Θ(n2) (Winograd), i.e., boring

11

The Path to Fast Libraries (continued)

 ATLAS (late 1990s, inspired by PhiPAC): BLAS generator

 Enumerates many implementation variants (blocking etc.) and picks 
the fastest (example)

 Enables automatic performance porting

 Most important: BLAS3 MMM generator

12

LAPACK

BLAS

static higher level functions

kernel functions implemented for each computer

LAPACK

BLAS

static higher level functions

kernel functions generated for each computer

http://math-atlas.sourceforge.net/
http://www1.icsi.berkeley.edu/~bilmes/phipac/
atlas-generated.c


© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

ATLAS Architecture

Detect
Hardware

Parameters

ATLAS Search
Engine

(MMSearch)

NR
MulAdd

L*

L1Size
ATLAS MM

Code Generator
(MMCase)

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile,
Execute,
Measure

MFLOPS

Hardware parameters:
• L1Size: size of L1 data cache
• NR: number of registers
• MulAdd: fused multiply-add available?
• L* : latency of FP multiplication

Search parameters:
• for example blocking sizes
• span search space
• specify code
• found by orthogonal line search

source: Pingali, Yotov, Cornell U. 13

ATLAS

Detect
Hardware

Parameters

ATLAS 
Search Engine

NR
MulAdd

L*

L1Size

ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile
Execute

Measure

Mflop/s

Model-Based ATLAS (2005)

Detect
Hardware

Parameters
ModelNR

MulAdd
L*

L1I$Size ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

• Search for parameters replaced by model to compute them
• Much faster + provides understanding of what parameters are found

source: Pingali, Yotov, Cornell U. 14



© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

Optimizing MMM

 Blackboard

 References:

R. Clint Whaley, Antoine Petitet and Jack Dongarra, Automated Empirical 
Optimization of Software and the ATLAS project, Parallel Computing, 27(1-2):3-
35, 2001

K. Goto and R. van de Geijn, Anatomy of high-performance matrix 
multiplication, ACM Transactions on mathematical software (TOMS), 34(23), 
2008

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill, 
Is Search Really Necessary to Generate High-Performance BLAS?, Proceedings 
of the IEEE, 93(2), pp. 358–386, 2005.

Our presentation is based on this paper

15

Remaining Details

 Register renaming and the refined model for x86

 TLB effects

16

http://www.google.ch/url?sa=t&source=web&cd=4&ved=0CDwQFjAD&url=http://www.netlib.org/lapack/lawnspdf/lawn147.pdf&rct=j&q=Automated Empirical Optimization of Software and the ATLAS project&ei=lw2HTdTSHIKCOu-4iNkI&usg=AFQjCNEjPGwZfZ873yvNHH1vvrC6WBpmwQ&sig2=1c42eaC-A1isMp2wVF_9mQ&cad=rja
http://dl.acm.org/citation.cfm?id=1356053
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja


© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

Dependencies

 Read-after-write (RAW) or true dependency

 Write after read (WAR) or antidependency

 Write after write (WAW) or output dependency

r1 = r3 + r4
r2 = 2r1

W
R

nothing can be done
no ILP

r1 = r2 + r3
r2 = r4 + r5

R
W

dependency only by 
name → rename

r1 = r2 + r3
r  = r4 + r5

now ILP

r1 = r2 + r3
…
r1 = r4 + r5

W

W

dependency only by 
name → rename

r1 = r2 + r3
…
r  = r4 + r5

now ILP

17

Resolving WAR by Renaming

Renaming can be done at three levels:

 C source code (= you rename): use SSA style (next slide)

r1 = r2 + r3
r2 = r4 + r5

R
W

dependency only by 
name → rename

r1 = r2 + r3
r  = r4 + r5

now ILP

18



© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

Scalar Replacement + SSA

 How to avoid WAR and WAW in your basic block source code

 Solution: Single static assignment (SSA) code:

 Each variable is assigned exactly once

<more>
s266 = (t287 - t285);
s267 = (t282 + t286);
s268 = (t282 - t286);
s269 = (t284 + t288);
s270 = (t284 - t288);
s271 = (0.5*(t271 + t280));
s272 = (0.5*(t271 - t280));
s273 = (0.5*((t281 + t283) - (t285 + t287)));
s274 = (0.5*(s265 - s266));
t289 = ((9.0*s272) + (5.4*s273));
t290 = ((5.4*s272) + (12.6*s273));
t291 = ((1.8*s271) + (1.2*s274));
t292 = ((1.2*s271) + (2.4*s274));
a122 = (1.8*(t269 - t278));
a123 = (1.8*s267);
a124 = (1.8*s269);
t293 = ((a122 - a123) + a124);
a125 = (1.8*(t267 - t276));
t294 = (a125 + a123 + a124);
t295 = ((a125 - a122) + (3.6*s267));
t296 = (a122 + a125 + (3.6*s269));
<more>

no duplicates

19

Resolving WAR by Renaming

Renaming can be done at three levels:

 C source code (= you rename): use SSA style (next slide)

 Compiler: Uses a different register upon register allocation, r = r6

 Hardware (if supported): dynamic register renaming

 Requires a separation of architectural and physical registers

 Requires more physical than architectural registers

r1 = r2 + r3
r2 = r4 + r5

R
W

dependency only by 
name → rename

r1 = r2 + r3
r  = r4 + r5

now ILP

20



© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

Register Renaming

 Hardware manages mapping architectural → physical registers

 Each logical register has several associated physical registers

 Hence: more instances of each ri can be created

 Used in superscalar architectures (e.g., Intel Core) to increase ILP by 
dynamically resolving WAR/WAW dependencies

r1

r2

r3

rn

ISA
architectural (logical) registersphysical registers

21

Micro-MMM Standard Model

 MU*NU + MU + NU ≤ NR – ceil((Lx+1)/2)

 Core (NR = 16): MU = 2, NU = 3

 Code sketch (KU = 1)

● =

a

b

c

rc1 = c[0,0], …, rc6 = c[1,2] // 6 registers
loop over k {
load a  // 2 registers
load b  // 3 registers
compute // 6 indep. mults, 6 indep. adds, reuse a and b

}
c[0,0] = rc1, …, c[1,2] = rc6

reuse in a, b, c

22



© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

Extended Model (x86)
 Set MU = 1, NU = NR – 2 = 14

 Code sketch (KU = 1)

● =
a b c

reuse in c

rc1 = c[0], …, rc14 = c[13] // 14 registers
loop over k {
load a          // 1 register
rb = b[1]      // 1 register
rb = rb*a      // mult (two-operand)
rc1 = rc1 + rb // add  (two-operand)
rb = b[2]       // reuse register (WAR: register renaming resolves it)
rb = rb*a       
rc2 = rc2 + rb
…

}
c[0] = rc1, …, c[13] = rc14

Summary:
- no reuse in a and b
+ larger tile size available for c since for b only one register is used 23

Visualization of What Seems to Happen

24

● =

a

b

c

reuse in a, b, c

● =
a b c

reuse in c

2

3
1 14 14

2 x 3

r1

r2

r3

rn

ISA
logical registersphysical registers

r1

r2

r3

rn

rbrbrb

ISA
logical registersphysical registers

register used



© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

Experiments

 Unleashed: Not generated = 
hand-written contributed code

 Refined model for computing 
register tiles on x86

 Blocking is for L1 cache

 Result: Model-based is 
comparable to search-based 
(except Itanium)

graph: Pingali, Yotov, Cornell U.

ATLAS generated

25

Remaining Details

 Register renaming and the refined model for x86

 TLB effects

 Blackboard

26



© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2019

Path to Fast Libraries

 The advent of SIMD vector instructions (SSE, 1999) made ATLAS 
obsolete

 The advent of multicore systems (ca. 2005) required a redesign of 
LAPACK (just parallelizing BLAS is suboptimal)

 BLAS interface needs to be extended to handle higher-order tensor 
operations (used in machine learning)

 Automatic generation of blocked algorithms, alternatives to LAPACK 
(FLAME)

 Program generator for small linear algebra operations 
(SLinGen/LGen)

27

LAPACK

BLAS

static higher level functions

kernel functions generated for each computer

https://www.cs.utexas.edu/~flame/web/
https://acl.inf.ethz.ch/research/LGen/

