How to Write Fast Numerical Code
Spring 2019
Lecture: Roofline model

Instructor: Markus Püschel
TA: Tyler Smith, Gagandeep Singh, Alen Stojanov

Operational Intensity Again

- Definition: Given a program P, assume cold (empty) cache

 Operational intensity: \[I(n) = \frac{W(n)}{Q(n)} \]
 \(W(n) \) #flops (input size n)
 \(Q(n) \) #bytes transferred cache ↔ memory (for input size n)

- Examples: Determine asymptotic bounds on \(I(n) \)
 - Vector sum: \(y = x + y \) \(O(1) \)
 - Matrix-vector product: \(y = Ax \) \(O(1) \)
 - Fast Fourier transform \(O(\log(n)) \)
 - Matrix-matrix product: \(C = AB + C \) \(O(n) \)
Compute/Memory Bound

- A function/piece of code is:
 - Compute bound if it has high operational intensity
 - Memory bound if it has low operational intensity
- The roofline model makes this more precise
- Blackboard

Roofline Measurements

- Tool developed in our group
 (G. Ofenbeck, R. Steinmann, V. Caparros-Cabaza, D. Spampinato)
 http://www.spiral.net/software/roofline.html
- You can use it in your project
- Example plots follow
- Get (non-asymptotic) bounds on I:
 - daxpy: $y = \alpha x + y$
 - dgemv: $y = Ax + y$
 - dgemm: $C = AB + C$
 - FFT
Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, \textit{sequential}
Cold cache

\begin{itemize}
 \item Performance [Flops/Cycle]
 \item Cold cache
 \item What happens when we go to parallel code?
\end{itemize}

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, \textit{parallel}
Cold cache

\begin{itemize}
 \item Performance [Flops/Cycle]
 \item Cold cache
 \item What happens when we go to warm cache?
\end{itemize}
Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, sequential
Warm cache

Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Various MMM
Cold cache

MMM: Try to guess the basic shapes
Generalized Roofline Model

Website and tool: https://acl.inf.ethz.ch/research/ERM/

Summary

- Roofline plots distinguish between memory and compute bound
- Can be used on paper
- Measurements difficult (performance counters) but doable
- Interesting insights: *use in your project!*