Submission instructions (read carefully):

- **(Submission)**
 Homework is submitted through the Moodle system https://moodle-app2.let.ethz.ch/course/view.php?id=10968.

- **(Late policy)**
 You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours after the due time. For example, submitting 1 hour late costs 1 late day. Note that each homework will be available for submission on the Moodle system 2 days after the deadline. However, if the accumulated time of the previous homework submissions exceeds 3 days, the homework will not count.

- **(Formats)**
 If you use programs (such as MS-Word or Latex) to create your assignment, convert it to PDF and name it homework.pdf. When submitting more than one file, make sure you create a zip archive that contains all related files, and does not exceed 10 MB. Handwritten parts can be scanned and included or brought (in time) to Alen’s, Tyler’s or Gagandeep’s office.

- **(Plots)**
 For plots/benchmarks, provide (concise) necessary information for the experimental setup (e.g., compiler and flags) and always briefly discuss the plot and draw conclusions. Follow (at least to a reasonable extent) the small guide to making plots from the lecture.

- **(Code)**
 When compiling the final code, ensure that you use optimization flags (e.g. for GCC use the flag “-O3”).

- **(Neatness)**
 5% of the points in a homework are given for neatness.

Exercises:

1. **Matrix-matrix multiplication kernel (50 pts)**

Consider the following matrix-multiplication operation: $C := A^T B$, where C is a 4×8 row-major matrix and B is an $n \times 8$ row-major matrix. The matrix A^T can be equivalently described as the transpose of an $n \times 4$ row-major matrix A, or as a $4 \times n$ column-major matrix.

All matrices are double precision.

This operation used as a so-called *microkernel* in many high-performance linear algebra libraries.

A skeleton and sample C code that implements this operation is provided here.

The operation is illustrated below:
Implement the specified matrix-matrix multiplication operation with vector intrinsics using the AVX2 (with FMA) instruction set. Optimize it as much as you can. You may may use shuffle intrinsics such as _m256_shuffle_pd and _m256_permute2f128_pd. For this assignment you are not allowed to use broadcast intrinsics like _m256_broadcast_pd.

Hints:

(a) The size of C is fixed to 4×8, but n, the width of A^T and B, can be any size.

(b) Each iteration of the loop exposes a column of A^T and a row of B, and performs an outer-product, where each element of the column of A^T is multiplied with each element of the row of B, updating the corresponding element of C. If a_i is the element in the i^{th} row of the current column of A^T, and b_j is the element in the j^{th} column of the current row of B, then the product $a_i \cdot b_j$ is added to the element in the i^{th} row and j^{th} column of C.

(c) You may find that it is easiest to vectorize this outer-product rather than the loop around it. This way n does not need to be divisible by 4.

Answer the following:

(a) Report the number of flops per cycle attained by your code in a plot for $n = 25, \ldots, 500$ in steps of 25.

(b) What percentage of peak Gflop/cycle does your code attain? Consider for the peak only the adds and mults being performed.

(c) Submit your optimized microkernel.cpp file to moodle.
Solution:

Code for a sample solution is given below.

```c
void microkernel_shuffles(double* At, double *B, double *C, int n) {
    // Clear out registers storing c
    __m256d c_aa = _mm256_setzero_pd();
    __m256d c_ab = _mm256_setzero_pd();
    __m256d c_ac = _mm256_setzero_pd();
    __m256d c_ad = _mm256_setzero_pd();
    __m256d c_ba = _mm256_setzero_pd();
    __m256d c_bb = _mm256_setzero_pd();
    __m256d c_bc = _mm256_setzero_pd();
    __m256d c_bd = _mm256_setzero_pd();

    // Perform computation
    for(int p = 0; p < n; p++) {
        __m256d b0 = _mm256_load_pd(&B[NR*p]);
        __m256d b1 = _mm256_load_pd(&B[NR*p + 4]);
        __m256d a_a = _mm256_fma_pd(a_a, b0, c_aa);
        __m256d a_b = _mm256_permute2f128_pd(a_a, a_a, 0x01);
        c_ab = _mm256_fmadd_pd(a_b, b0, c_ab);
        __m256d a_c = _mm256_permute2f128_pd(a_a, a_a, 0x05);
        c_bc = _mm256_fmadd_pd(a_c, b0, c_bc);
        __m256d a_d = _mm256_permute2f128_pd(a_a, a_a, 0x09);
        c_bd = _mm256_fmadd_pd(a_d, b0, c_bd);
    }

    // Permute C so that each register stores 4 elements in a row
    __m256d ca_ac = _mm256_blend_pd(c_aa, c_ac, 0x6);
    __m256d ca_ca = _mm256_blend_pd(c_ac, c_aa, 0x6);
    __m256d ca_db = _mm256_blend_pd(c_ab, c_ad, 0x6);
    __m256d ca_bc = _mm256_blend_pd(c_ac, c_bc, 0x6);
    __m256d cb_ca = _mm256_blend_pd(c_bc, c_ca, 0x6);
    __m256d cb_db = _mm256_blend_pd(c_ab, c_ad, 0x6);
    __m256d cb_pc = _mm256_blend_pd(c_bc, c_ad, 0x6);
    __m256d cb_dp = _mm256_blend_pd(c_bc, c_ab, 0x6);
    __m256d c00 = _mm256_permute2f128_pd(c_ac, c_db, 0x30);
    __m256d c01 = _mm256_permute2f128_pd(c_ca, c_db, 0x30);
    __m256d c02 = _mm256_permute2f128_pd(c_ca, c_db, 0x30);
    __m256d c03 = _mm256_permute2f128_pd(c_db, c_ca, 0x30);
    __m256d c10 = _mm256_permute2f128_pd(c_db, c_ca, 0x30);
    __m256d c11 = _mm256_permute2f128_pd(c_db, c_ca, 0x30);
    __m256d c12 = _mm256_permute2f128_pd(c_db, c_ca, 0x30);
    __m256d c13 = _mm256_permute2f128_pd(c_db, c_ca, 0x30);

    // Store C
    _mm256_store_sd(&C[NR*0 + 0], c00);
    _mm256_store_sd(&C[NR*0 + 4], c01);
    _mm256_store_sd(&C[NR*1 + 0], c10);
    _mm256_store_sd(&C[NR*1 + 4], c11);
    _mm256_store_sd(&C[NR*2 + 0], c02);
    _mm256_store_sd(&C[NR*2 + 4], c12);
    _mm256_store_sd(&C[NR*3 + 0], c03);
    _mm256_store_sd(&C[NR*3 + 4], c13);
}
```
Below is a plot of the performance achieved, compiled with gcc 7.3.0 with the flags `-O3 -mfma -mavx2`.

Discussion:

This code attains a maximum of 13.917 flops/cycle, which is 87% of peak, on Tyler’s Skylake computer. In order to reach performance, \(C \) is stored in \(__m256d \) variables with the intent that it remains in registers. Each iteration of the loop, 8 elements of \(B \) are loaded and 4 elements of \(A \) are loaded. Three permutations are then used to shuffle elements of \(A \) around to compute the outer product. For the permutations, it is (1) essential to use as few as possible and (2) essential to cross SIMD lanes as seldom as possible. In AVX, the 256-bit \(\text{ymm} \) registers are organized by lanes. The lower 128 bits are in one lane and the higher 128 bits are in another. Crossing lanes is expensive. You may have noticed that there are fewer instructions to permute or blend across lanes, and the instructions that do so have a higher latency. Here, \(\text{mm256_permute2f128} __pd \) compiles to the instruction \(\text{vperm2f128} \), which has a latency of 3 cycles on Skylake, whereas \(\text{mm256_permute} __pd \) compiles to vpermilpd, which has a latency of 1 cycle. In the code above, each iteration of the loop has only one instruction that crosses SIMD lanes. After the main loop, we have \(C \) stored in a somewhat convoluted manner in 8 \(__m256d \) variables and we use 16 permutation instructions to permute it into a row-stored format to write it out using packed store instructions.

The variables storing the matrix \(C \) are designed to remain in registers. On Haswell, if there are not multiple accumulators for these registers, the FMA latency of 5 cycles causes a bottleneck, and this kernel can only achieve 80% of peak. In previous homeworks, we have seen one solution to this issue is to use multiple accumulators. Another solution, applicable in this case, is to implement a larger kernel. A \(4 \times 12 \) kernel would be able to achieve close to peak.
2. **Complex representation conversion (45 pts)**

You are given an array of \(n \) **nonzero** complex numbers, stored in the following **interleaved** format:

\[
[a_0, b_0, a_1, b_1, a_2, b_2, \ldots, a_{n-1}, b_{n-1}],
\]

where each pair \((a_j, b_j)\) represents the complex number \(a_j + b_j i\), \(i = \sqrt{-1}\). Your task is to compute an array containing a different (polar-like) representation of these complex numbers, stored in the following interleaved format:

\[
[p_0, q_0, p_1, q_1, p_2, q_2, \ldots, p_{n-1}, q_{n-1}],
\]

where \(p_j = \frac{a_j}{b_j} \), and \(q_j = \text{sgn}(a) \cdot (a_j^2 + b_j^2) \). We define the sign function \(\text{sgn}(x)\) as follows:

\[
\text{sgn}(x) = \begin{cases}
-1 & x < 0 \\
0 & x = 0 \\
1 & x > 0
\end{cases}
\]

A skeleton and sample C code that implements this operation is provided [here](#).

(a) Implement the specified operation with vector intrinsics using the **AVX2** (with FMA) instruction set to run as fast as possible.

(b) Report the number of flops per cycle attained by your code.

(c) Considering only the port and throughput information for the SIMD instructions in your conversion routine, give a hard lower bound of its runtime on Haswell.

(d) Submit your `complex_conversion.cpp` file to moodle.

Solution:

A sample solution of this code in vector intrinsics is as follows:

```c
void complex_conversion_avx(const double *complex_a, double *complex_b, int n) {
    __m256d ones = _mm256_set1_pd(1.0);
    __m256d minus_ones = _mm256_set1_pd(-1.0);
    __m256d zeros = _mm256_setzero_pd();

    for (int i = 0; i <= n; i += 4) {
        __m256d xyxy1 = _mm256_loadu_pd(&complex_a[2*i]);
        __m256d xyxy2 = _mm256_loadu_pd(&complex_a[2*i + 4]);
        __m256d xxxx = _mm256_unpacklo_pd(xyxy1, xyxy2);
        __m256d yyyy = _mm256_unpackhi_pd(xyxy1, xyxy2);
        __m256d pppp = _mm256_div_pd(xxxx, yyyy);
        __m256d qqqq = _mm256_mul_pd(xxxx, xxxx);
        qqqq = _mm256_fmadd_pd(yyyy, yyyy, qqqq);
        __m256d mask = _mm256_cmp_pd(xxxx, zeros, 0x01);
        __m256d signs = _mm256_blendv_pd(ones, minus_ones, mask);
        qqqq = _mm256_mul_pd(signs, qqqq);
        __m256d pqpq1 = _mm256_unpacklo_pd(pppp, qqqq);
        __m256d pqpq2 = _mm256_unpackhi_pd(pppp, qqqq);
        __mm256_storeu_pd(&complex_b[2*i], pqpq1);
        __mm256_storeu_pd(&complex_b[2*i+4], pqpq2);
    }

    // Cleanup to handle when n is not divisible by 4
    int start_remaining = (n / 4) * 4;
    complex_conversion_c(complex_a + 2*start_remaining, complex_b + 2*start_remaining, n - start_remaining);
}
```

Each iteration has a single division instruction which has a throughput on Haswell of at most 1 instruction per 16 cycles. All other instructions can execute using a different port, and so an upper bound on the performance is 20 flops per 16 cycles. The (below) reported performance is better than that—Skylake has a throughput of 1 vdivpd instruction per 8 cycles, giving a performance upper bound of 2.5 flops per cycle, if we bound only by the number of divisions. The below plot reports the flops per cycle for various problem sizes.