Vintual Tlenory System (Gre Family)

- the pwocessor wores with virtual addresses
- all caetes work with physical addresses
- Sodh address spaces are oryanied in pajes
page sice: 4 4B (can se chayed to $2 \pi 3$ and even $1 G B$ on the letest processov: chaye in OS selliys)
- address dranstation: vindual page numjer (VPN) \rightarrow physical page number (PFN)

\Rightarrow LI cache loolup can stant cucumentl 7 with address drass) aftion

Address Lranslation

- uses a cache celed wanslation loohaside drffer (TLB)
- Gre Sacdydridfe and leter:

1TLB (insductions): 128 entries OTLB (deder): 64 evtics

STLB (shared tevel 2): 512-1536 erties (Sandy Aridge - Su>Labe)

JTLB hid: no peneldy
OTLB miss, STLB hid; fers escles penelly STLS miss: can be very eppensive

Impaed on perfermanel
Repected aceesfing a wouling sit spreed over too many pajes (uncaded) yiebls TCD misses and can yield sfyhificant sloo dewn.

Example: STLB=1024 (Haswell)
accessing repected/> 2048 donfley spread ond in memory $=$ wohly set of $2048 \times 64=12843$个 cade Sloele
\Rightarrow fits lindo $\angle 2$ cade
sef TLi3 mijses

Example MTiM

wouking sed at highest level is shaded

We loole for parts in wouking set spreed in menory

- block vow of a: cohiguous
- all of δ : Gonguous
- Sloel of c : if $M>512$ (512 donsles $=4413$) then spread over $\geqslant N_{3}$ pages

Aypically N_{B} is in the 10_{s}, so no sig prothem
Int: the BCAS function dgemn has this interface:

$$
\operatorname{dgemm}(\underbrace{a, S, c}_{\text {mekices }}, \underbrace{N, K, G)}_{\text {sives }}, \underbrace{\text { lda, lels, /de })}_{\text {leadij dinensions }}
$$

Leadly dimentions: enable use on maticy intide matrices

assume |ola, lab, ide >512

- Shock now of a : spreed ow r $\geqslant N_{1}$ pages
- all of δ; spreed our $\geqslant k$ pages
- Slow of C : spread over $\geqslant N_{B}$ pages

So copying to contiguous memory may pay off!
I/ all of 3 reused: possibly copy
for $i=0: N_{i 3}: N-1$
I/ bloch roo of a reused: possibly copy
for $0=0: N_{B}=M-1$
1/ Slock of C reused: possibly copy
for $K=0: N_{B}: K-1$

