
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

How to Write Fast Numerical Code
Spring 2017
Lecture: Memory bound computation, sparse linear algebra, OSKI

Instructor: Markus Püschel

TA: Alen Stojanov, Georg Ofenbeck, Gagandeep Singh

ATLAS

Detect
Hardware

Parameters

ATLAS
Search Engine

NR
MulAdd

L*

L1Size

ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile
Execute

Measure

Mflop/s

Model-Based ATLAS

Detect
Hardware

Parameters
ModelNR

MulAdd
L*

L1I$Size ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

source: Pingali, Yotov, Cornell U.2

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Principles

 Optimization for memory hierarchy

 Blocking for cache

 Blocking for registers

 Basic block optimizations

 Loop order for ILP

 Unrolling + scalar replacement

 Scheduling & software pipelining

 Optimizations for virtual memory

 Buffering (copying spread-out data into contiguous memory)

 Autotuning

 Search over parameters (ATLAS)

 Model to estimate parameters (Model-based ATLAS)

 All high performance MMM libraries do some of these (but possibly in a
different way)

3

Today

 Memory bound computations

 Sparse linear algebra, OSKI

4

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Memory Bound Computation

 Data movement, not computation, is the bottleneck

 Typically: Computations with operational intensity I(n) = O(1)

performance

operational intensity

peak performance bound

memory bandwidth bound

memory
bound

compute
bound

5

Memory Bound Or Not? Depends On …

 The computer

 Memory bandwidth

 Peak performance

 How it is implemented

 Good/bad locality

 SIMD or not

 How the measurement is done

 Cold or warm cache

 In which cache data resides

 See next slide

6

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Example: BLAS 1, Warm Data & Code

0

10

20

30

40

50

60

70

80

90

100

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB 4 MB 16 MB

z = x + y on Core i7 (Nehalem, one core, no SSE), icc 12.0 /O2 /fp:fast /Qipo

L1
cache

L2
cache

L3
cache

2 doubles/cycle

1 double/cycle

1/2 double/cycle

sum of vector lengths (working set)

Percentage peak performance (peak = 1 add/cycle)

Guess the
read bandwidths

7

Sparse Linear Algebra

 Sparse matrix-vector multiplication (MVM)

 Sparsity/Bebop/OSKI

 References:

 Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization
Framework for Sparse Matrix Kernels, Int’l Journal of High Performance
Comp. App., 18(1), pp. 135-158, 2004

 Vuduc, R.; Demmel, J.W.; Yelick, K.A.; Kamil, S.; Nishtala, R.; Lee, B.;
Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply,
pp. 26, Supercomputing, 2002

 Sparsity/Bebop website

8

http://bebop.cs.berkeley.edu/

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Sparse Linear Algebra

 Very different characteristics from dense linear algebra (LAPACK etc.)

 Applications:

 finite element methods

 PDE solving

 physical/chemical simulation
(e.g., fluid dynamics)

 linear programming

 scheduling

 signal processing (e.g., filters)

 …

 Core building block: Sparse MVM

Graphics: http://aam.mathematik.uni-freiburg.de/IAM/homepages/claus/
projects/unfitted-meshes_en.html

9

Sparse MVM (SMVM)

 y = y + Ax, A sparse but known

 Typically executed many times for fixed A

 What is reused (temporal locality)?

 Upper bound on operational intensity?

●= +

y y xA

10

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Storage of Sparse Matrices

 Standard storage is obviously inefficient: Many zeros are stored

 Unnecessary operations

 Unnecessary data movement

 Bad operational intensity

 Several sparse storage formats are available

 Most popular: Compressed sparse row (CSR) format

 blackboard

11

CSR

 Assumptions:

 A is m x n

 K nonzero entries

 Storage:

 K doubles + (K+m+1) ints = Θ(max(K, m))

 Typically: Θ(K)

b c c

a

b b

c

A as matrix

b c c a b b c

0 1 3 1 2 3 2

0 3 4 6 7

values

col_idx

row_start

A in CSR:

length K

length K

length m+1

12

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Sparse MVM Using CSR

void smvm(int m, const double* values, const int* col_idx,
const int* row_start, double* x, double* y)

{
int i, j;
double d;

/* loop over m rows */
for (i = 0; i < m; i++) {
d = y[i]; /* scalar replacement since reused */

/* loop over non-zero elements in row i */
for (j = row_start[i]; j < row_start[i+1]; j++)
d += values[j] * x[col_idx[j]];

y[i] = d;
}

}

y = y + Ax

CSR + sparse MVM: Advantages?
13

CSR

 Advantages:

 Only nonzero values are stored

 All three arrays for A (values, col_idx, row_start) accessed
consecutively in MVM (good spatial locality)

 Good temporal locality with respect to y

 Disadvantages:

 Insertion into A is costly

 Poor temporal locality with respect to x

14

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Impact of Matrix Sparsity on Performance

 Adressing overhead (dense MVM vs. dense MVM in CSR):

 ~ 2x slower (example only)

 Fundamental difference between MVM and sparse MVM (SMVM):

 Sparse MVM is input dependent (sparsity pattern of A)

 Changing the order of computation (blocking) requires changing the data
structure (CSR)

15

Bebop/Sparsity: SMVM Optimizations

 Idea: Blocking for registers

 Reason: Reuse x to reduce memory traffic

 Execution: Block SMVM y = y + Ax into micro MVMs

 Block size r x c becomes a parameter

 Consequence: Change A from CSR to r x c block-CSR (BCSR)

 BCSR: Blackboard

16

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

BCSR (Blocks of Size r x c)

 Assumptions:

 A is m x n

 Block size r x c

 Kr,c nonzero blocks

 Storage:

 rcKr,c doubles + (Kr,c+m/r+1) ints = Θ(rcKr,c)

 rcKr,c ≥ K

b c c

a

b b

c

A as matrix (r = c = 2)

b c 0 a 0 c 0 0 b b c 0

0 1 1

0 2 3

b_values

b_col_idx

b_row_start

A in BCSR (r = c = 2):

length rcKr,c

length Kr,c

length m/r+1

17

Sparse MVM Using 2 x 2 BCSR
void smvm_2x2(int bm, const int *b_row_start, const int *b_col_idx,

const double *b_values, double *x, double *y)
{

int i, j;
double d0, d1, c0, c1;

/* loop over bm block rows */
for (i = 0; i < bm; i++) {

d0 = y[2*i]; /* scalar replacement since reused */
d1 = y[2*i+1];

/* dense micro MVM */
for (j = b_row_start[i]; j < b_row_start[i+1]; j++, b_values += 2*2) {

c0 = x[2*b_col_idx[j]+0]; /* scalar replacement since reused */
c1 = x[2*b_col_idx[j]+1];
d0 += b_values[0] * c0;
d1 += b_values[2] * c0;
d0 += b_values[1] * c1;
d1 += b_values[3] * c1;

}
y[2*i] = d0;
y[2*i+1] = d1;

}
}

18

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

BCSR

 Advantages:

 Temporal locality with respect to x and y

 Reduced storage for indexes

 Disadvantages:

 Storage for values of A increased (zeros added)

 Computational overhead (also due to zeros)

 Main factors (since memory bound):

 Plus: increased temporal locality on x + reduced index storage
= reduced memory traffic

 Minus: more zeros = increased memory traffic

* =

19

Which Block Size (r x c) is Optimal?

source: R. Vuduc, LLNL

Example:

 20,000 x 20,000 matrix
(only part shown)

 Perfect 8 x 8 block structure

 No overhead when blocked
r x c, with r, c divides 8

20

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Speed-up Through r x c Blocking

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

• machine dependent
• hard to predict

21

How to Find the Best Blocking for given A?

 Best block size is hard to predict (see previous slide)

 Solution 1: Searching over all r x c within a range, e.g., 1 ≤ r,c ≤ 12

 Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs

 Total cost: 1440 SMVMs

 Too expensive

 Solution 2: Model

 Estimate the gain through blocking

 Estimate the loss through blocking

 Pick best ratio

22

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Model: Example

Gain by blocking (dense MVM) Overhead (average) by blocking

16/9 = 1.77

1.4

1.4/1.77 = 0.79 (no gain)

* =

Model: Doing that for all r and c
and picking best

23

Model

 Goal: find best r x c for y = y + Ax

 Gain through r x c blocking (estimation):

dependent on machine, independent of sparse matrix

 Overhead through r x c blocking (estimation)
scan part of matrix A

independent of machine, dependent on sparse matrix

 Expected gain: Gr,c/Or,c

dense MVM performance in r x c BCSR
dense MVM performance in CSR

Gr,c =

number of matrix values in r x c BCSR
number of matrix values in CSR

Or,c =

24

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Gain from Blocking (Dense Matrix in BCSR)

• machine dependent
• hard to predict

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

ro
w

 b
lo

ck
 s

iz
e

 r

ro
w

 b
lo

ck
 s

iz
e

 r

column block size c column block size c

Pentium III Itanium 2

25

Typical Result

BCSR model

BCSR exhaustive
search

Analytical
upper bound
how obtained?
(blackboard)

CSR

Figure: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

26

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Principles in Bebop/Sparsity Optimization

 Optimization for memory hierarchy = increasing locality
 Blocking for registers (micro-MVMs)

 Requires change of data structure for A

 Optimizations are input dependent (on sparse structure of A)

 Fast basic blocks for small sizes (micro-MVM):
 Unrolling + scalar replacement

 Search for the fastest over a relevant set of algorithm/implementation
alternatives (parameters r, c)
 Use of performance model (versus measuring runtime) to evaluate expected

gain

Different from ATLAS

27

SMVM: Other Ideas

 Cache blocking

 Value compression

 Index compression

 Pattern-based compression

 Special scenario: Multiple inputs

28

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Cache Blocking

 Idea: divide sparse matrix into blocks of sparse matrices

 Experiments:

 Requires very large matrices (x and y do not fit into cache)

 Speed-up up to 2.2x, only for few matrices, with 1 x 1 BCSR

Figure: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

29

Value Compression

 Situation: Matrix A contains many duplicate values

 Idea: Store only unique ones plus index information

b c c

a

b b

c

b c c a b b c

0 1 3 1 2 3 2

0 3 4 6 7

values

col_idx

row_start

A in CSR:

1 2 2 0 1 1 2

0 1 3 1 2 3 2

0 3 4 6 7

values

col_idx

row_start

A in CSR-VI:

a b c

Kourtis, Goumas, and Koziris, Improving the Performance of Multithreaded
Sparse Matrix-Vector Multiplication using Index and Value Compression, pp. 511-519, ICPP 2008

30

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Index Compression

 Situation: Matrix A contains sequences of nonzero entries

 Idea: Use special byte code to jointly compress col_idx and row_start

row_start

col_idx

byte code

Coding Decoding

Willcock and Lumsdaine, Accelerating Sparse Matrix Computations
via Data Compression, pp. 307-316, ICS 2006

31

Pattern-Based Compression

 Situation: After blocking A, many blocks have the same nonzero
pattern

 Idea: Use special BCSR format to avoid storing zeros;
needs specialized micro-MVM kernel for each pattern

b c c

a

b b

c

A as matrix

b c 0 a 0 c 0 0 b b c 0

Values in 2 x 2 BCSR

b c a c b b c

Values in 2 x 2 PBR

+ bit string: 1101 0100 1110

Belgin, Back, and Ribbens, Pattern-based Sparse Matrix Representation
for Memory-Efficient SMVM Kernels, pp. 100-109, ICS 2009

32

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Special scenario: Multiple inputs

 Situation: Compute SMVM y = y + Ax for several independent x

 Blackboard

 Experiments:
up to 9x speedup for 9 vectors

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

33

