How to Write Fast Numerical Code
Spring 2017
Lecture: Roofline model

Instructor: Markus Püschel
TA: Alen Stojanov, Georg Ofenbeck, Gagandeep Singh

Operational Intensity Again

- *Definition:* Given a program P, assume cold (empty) cache

 $$ I(n) = \frac{W(n)}{Q(n)} $$

 - #flops (input size n)
 - #bytes transferred cache \leftrightarrow memory (for input size n)

- *Examples:* Determine asymptotic bounds on $I(n)$
 - Vector sum: $y = x + y$
 - $O(1)$
 - Matrix-vector product: $y = Ax$
 - $O(1)$
 - Fast Fourier transform
 - $O(\log(n))$
 - Matrix-matrix product: $C = AB + C$
 - $O(n)$
Compute/Memory Bound

- A function/piece of code is:
 - **Compute bound** if it has high operational intensity
 - **Memory bound** if it has low operational intensity

- The roofline model makes this more precise
- Blackboard

Roofline Measurements

- Tool developed in our group
 (G. Ofenbeck, R. Steinmann, V. Caparros-Cabezas, D. Spampinato)
 http://www.spiral.net/software/roofline.html

- You can use it in your project
- Example plots follow
- Get (non-asymptotic) bounds on I:
 - daxpy: \(y = \alpha x + y \)
 - dgemv: \(y = Ax + y \)
 - dgemm: \(C = AB + C \)
 - FFT
Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, sequential
Cold cache

What happens when we go to parallel code?

Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, parallel
Cold cache

What happens when we go to warm cache?
Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, sequential
Warm cache

Roofline Measurements

Core i7 Sandy Bridge, 6 cores
Code: Various MMM
Cold cache

MMM: Try to guess the basic shapes
Summary

- Roofline plots distinguish between memory and compute bound
- Can be used on paper
- Measurements difficult (performance counters) but doable
- Interesting insights: use in your project!