
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

How to Write Fast Numerical Code
Spring 2017
Lecture: Architecture/Microarchitecture and Intel Core

Instructor: Markus Püschel

TA: Alen Stojanov, Georg Ofenbeck, Gagandeep Singh

Technicalities

 Class this Wednesday, no class this Thursday

 Midterm: Wed, April 26th (during recitation time)

 Research project:

 Let us know once you have a partner

 If you have a project idea, talk to me (break, after Wed class, email)

 Deadline: March 6th

 Finding partner: fastcode-forum@lists.inf.ethz.ch

2

mailto:fastcode-forum@lists.inf.ethz.ch

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Today

 Architecture/Microarchitecture: What is the difference?

 In detail: Intel Haswell and Sandybridge

 Crucial microarchitectural parameters

 Peak performance

 Operational intensity

3

Definitions

 Architecture (also instruction set architecture = ISA): The parts of a
processor design that one needs to understand to write assembly
code

 Examples: instruction set specification, registers

 Counterexamples: cache sizes and core frequency

 Example ISAs

 x86

 ia

 MIPS

 POWER

 SPARC

 ARM

4

Some assembly code

ipf:
xorps %xmm1, %xmm1
xorl %ecx, %ecx
jmp .L8

.L10:
movslq %ecx,%rax
incl %ecx
movss (%rsi,%rax,4), %xmm0
mulss (%rdi,%rax,4), %xmm0
addss %xmm0, %xmm1

.L8:
cmpl %edx, %ecx
jl .L10
movaps %xmm1, %xmm0
ret

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

x86-64 / em64t

x86-32

x86-16

MMX

SSE

SSE2

SSE3

SSE4

8086

286

386
486
Pentium
Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo
Penryn
Core i7 (Nehalem)
Sandy Bridge
Haswell

time

Intel x86
architectures Processors

AVX

MMX:
Multimedia extension

SSE:
Streaming SIMD extension

AVX:
Advanced vector extensions

5
AVX2

Backward compatible:
Old binary code (≥ 8086)
runs on new processors.

New code to run on old
processors?
Depends on compiler flags.

ISA SIMD (Single Instruction Multiple Data)
Vector Extensions

 What is it?
 Extension of the ISA. Data types and instructions for the parallel

computation on short (length 2-8) vectors of integers or floats

 Names: MMX, SSE, SSE2, …, AVX, …

 Why do they exist?
 Useful: Many applications have the necessary fine-grain parallelism

Then: speedup by a factor close to vector length

 Doable: Chip designers have enough transistors to play with; easy to build
with replication

 We will have an extra lecture on vector instructions
 What are the problems?

 How to use them efficiently

6

+ x 4-way

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

FMA = Fused Multiply-Add

 x = x + y*z

 Done as one operation, i.e., involves only one rounding step

 Better accuracy than sequence of mult and add

 Natural pattern in many algorithms

7

/* matrix multiplication; A, B, C are n x n matrices of doubles */
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

C[i*n+j] += A[i*n+k]*B[k*n+j];

time

MMX:
Multimedia extension

SSE:
Streaming SIMD extension

AVX:
Advanced vector extensions

8

4-way single

2-way double

8-way single, 4-way double

x86-64 / em64t

x86-32

x86-16

MMX

SSE

SSE2

SSE3

SSE4

8086

286

386
486
Pentium
Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo
Penryn
Core i7 (Nehalem)
Sandy Bridge
Haswell

Processors

AVX

AVX2fmas

Intel x86
architectures

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Definitions

 Microarchitecture: Implementation of the architecture

 Examples: caches, cache structure, CPU frequency, details of the
virtual memory system

 Examples

 Intel processors (Wikipedia)

 AMD processors (Wikipedia)

9

Intel’s Tick-Tock Model

 Tick: Shrink of process technology

 Tock: New microarchitecture

 Example: Core and successors
Shown: Intel’s microarchitecture code names (server/mobile may be different)

10

Core Nehalem Sandy Bridge Haswell Skylake

Conroe - Wolfdale Nehalem - Westmere Sandy Bridge – Ivy Bridge Haswell - Broadwell Skylake – Kaby Lake

65 nm 45 nm 32 nm 22 nm 14 nm

2007 2010 2012

Tick Tock

2014

In 2016 the Tick-tock model got discontinued
Now: processor – architecture – optimization (since Tick becomes harder)

2017

http://en.wikipedia.org/wiki/List_of_Intel_microprocessors
http://en.wikipedia.org/wiki/Amd_processors
http://en.wikipedia.org/wiki/Intel_Tick-Tock

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Intel Processors: Example Haswell

Pictures: Intel

Detailed information about Intel processors 11

http://www.anandtech.com

Microarchitecture:
The View of the Computer Architect

12

we take the software developer’s view …

Source: Intel Architectures Optimization Reference Manual

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

 Distribute microarchitecture abstraction

13

1 Core

Abstracted Microarchitecture: Example Core i7 Haswell (2013) and Sandybridge (2011)
Throughput (tp) is measured in doubles/cycle. For example: 4 (2)
Latency (lat) is measured in cycles
1 double floating point (FP) = 8 bytes
fma = fused multiply-add
Rectangles not to scale

Hard disk
≥ 0.5 TB

fp add

fp mul

int ALU

load

store

Main
Memory

(RAM)
32 GB max

L2 cache
256 KB
8-way
64B CB

L1
Icache

L1
Dcache

16 FP
register

internal
registers

instruction
decoder

instruction pool
(up to 192 (168) “in flight”)

execution
units

CISC ops

RISC
μops

issue
8 (6) μops/

cycle

lat: 4 (4)
tp: 12 =
8 ld + 4 st
(4)

lat: 11 (12)
tp: 8 (4)

lat: ~125
(100)
tp: 2 (1)

lat: millions
tp: ~1/50

(~1/100)

Memory hierarchy:
• Registers
• L1 cache
• L2 cache
• L3 cache
• Main memory
• Hard disk

Haswell Sandy Bridge

out of order execution
superscalar

© Markus Püschel
Computer ScienceSource: Intel manual (chapter 2), http://www.7-cpu.com/cpu/Haswell.html

CB = cache block

depends
on hard

disk
technology,

I/O
interconnect

fp fma

SIMD
logic/sh

uffle

Core i7-4770 Haswell:
4 cores, 8 threads
3.4 GHz
(3.9 GHz max turbo freq)
2 DDR3 channels 1600 MHz RAM

Core #1, L1, L2

Core #2, L1, L2

Core #3, L1, L2

Core #4, L1, L2

L3

L3

L3

L3

ring interconnect

core uncore

double FP:
max scalar tp:
• 2 fmas/cycle =
• 2 (1) adds/cycle and

2 (1) mults/cycle

max vector tp (AVX)
• 2 vfmas/cycle = 8 fmas/cycle =
• 8 (4) adds/cycle and

8 (4) mults/cycle

both:
32 KB
8-way
64B CB

Shared
L3 cache

8 MB
16-way
64B CB

lat: ~34
(26-31)
tp: 4 (4)

ISA

processor die

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Runtime Bounds (Cycles) on Haswell

 Number flops?

 Runtime bound no vector ops:

 Runtime bound vector ops:

 Runtime bound data in L1:

 Runtime bound data in L2:

 Runtime bound data in L3:

 Runtime bound data in main memory:

15

/* x, y are vectors of doubles of length n, alpha is a double */
double t = 0;
for (i = 0; i < n; i++)

x[i] = x[i] + alpha*y[i];

2n

n/2

n/8

n/4

n/4

n

Runtime dominated by data movement:
Memory-bound

maximal achievable percentage
of (vector) peak performance

50

50

12.5

n/2 25

Runtime Bounds (Cycles) on Core 2

 Number flops?

 Runtime bound no vector ops:

 Runtime bound vector ops:

 Runtime bound data in L1:

 …

 Runtime bound data in main memory:

16

/* matrix multiplication; A, B, C are n x n matrices of doubles */
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

C[i*n+j] += A[i*n+k]*B[k*n+j];

2n3

n3/2

n3/8

3/8 n2

3/2 n2

Runtime dominated by data operations (except very small n):
Compute-bound

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Operational Intensity

 Definition: Given a program P, assume cold (empty) cache

17

Operational intensity: I(n) =
W(n)

Q(n)

#flops (input size n)

#bytes transferred cache ↔ memory
(for input size n)

Operational Intensity (Cold Cache)

 Operational intensity:

 Flops: W(n)

 Memory transfers (doubles):

 Reads (bytes): Q(n)

 Operational intensity: I(n)

18

= 2n

≥ 2n (just from the reads)

≥ 16n
= W(n)/Q(n) ≤ 1/8

/* x, y are vectors of doubles of length n, alpha is a double */
double t = 0;
for (i = 0; i < n; i++)

x[i] = x[i] + alpha*y[i];

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Operational Intensity (Cold Cache)

 Operational intensity:

 Flops: W(n)

 Memory transfers (doubles):

 Reads (bytes): Q(n)

 Operational intensity: I(n)

19

= 2n3

≥ 3n2 (just from the reads)

≥ 24n2

= W(n)/Q(n) ≤ 1/12 n

/* matrix multiplication; A, B, C are n x n matrices of doubles */
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

C[i*n+j] += A[i*n+k]*B[k*n+j];

Compute/Memory Bound

 A function/piece of code is:

 Compute bound if it has high operational intensity

 Memory bound if it has low operational intensity

 A more exact definition depends on the given platform

 More details later: Roofline model

20

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Mapping of execution units to ports

Port 0

fp fma

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7

fp add

Source: Intel manual (Table C-8. 256-bit AVX Instructions, Table 2-6. Dispatch Port and Execution Stacks of the Haswell Microarchitecture,
Figure 2-2. CPU Core Pipeline Functionality of the Haswell Microarchitecture),

fp div

load load storefp fma

fp mul fp mul

SIMD log

Execution
Unit (fp)

Latency
[cycles]

Throughput
[ops/cycle]

Gap
[cycles /issue]

fma 5 2 0.5

mul 5 2 0.5

add 3 1 1

div (scalar)

div (4-way)

14-20
25-35

1/13
1/27

13
27

SIMD log

shuffle

fp mov

Int ALU

st addr st addr

st addr

SIMD log Int ALU

Int ALU Int ALU

• Every port can issue one instruction/cycle
• Gap = 1/throughput
• Intel calls gap the throughput!
• Same units for scalar and vector flops
• Same latency/throughput for scalar

(one double) and AVX vector (four doubles)
flops, except for div

execution units
fp = floating point
log = logic

22

How Many Cycles are at least required?

 A function with n adds and n mults in the C code

 A function with n add and n mult instructions in the assembly code

 A function with n adds in the C code

 A function with n add instructions in the assembly code

 A function with n adds and n/2 mults in the C code

n/2

n

n/2

n

n/2

Port 0

fp fma

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7

fp adddiv

load load storefp fma

fp mul fp mul

SIMD log

SIMD log

shuffle

fp mov

Int ALU

st addr st addr

st addr

SIMD log Int ALU

Int ALU Int ALU

execution units

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Comments on Intel Haswell uarch

 Peak performance 16 DP flops/cycle (only reached if SIMD FMA)

 Peak performance mults: 2 mults/cycle (scalar 2 flops/cycle, SIMD AVX 8 flops/cycle)

 Peak performance adds: 1 add/cycle (scalar 1 flop/cycle, SIMD AVX 4 flops/cycle).
FMA in port 0 can be used for add, but longer latency

 L1 bandwidth: two 32-byte loads and one 32-byte store per cycle (Sandy
Bridge, either one 16-byte load and one 16-byte store, or one 32-byte load)

 Shared L3 cache organized as multiple cache slices for better scalability with
number of cores, thus access time is non-uniform

 Shared L3 cache in a different clock domain (uncore)

Example: Peak Performance

24

Peak performance
of this computer:
4 cores x
2-way SSE x
1 add and 1 mult/cycle
= 16 flops/cycle
= 48 Gflop/s

(Sandy Bridge)

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2017

Summary

 Architecture vs. microarchitecture

 To optimize code one needs to understand a suitable abstraction of
the microarchitecture and its key quantitative characteristics

 Memory hierarchy with throughput and latency info

 Execution units with port, throughput, and latency info

 Operational intensity:

 High = compute bound = runtime dominated by data operations

 Low = memory bound = runtime dominated by data movement

25

