
263-2300-00: How To Write Fast Numerical Code
Assignment 2: 80 points

Due Date: Th, March 16th, 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/course.html

Questions: fastcode@lists.inf.ethz.ch

Submission instructions (read carefully):

• (Submission)
Homework is submitted through the Moodle system https://moodle-app2.let.ethz.ch/course/view.php?id=3122.
Before submission, you must enroll in the Moodle course.

• (Late policy)
You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours
after the due time. For example, submitting 1 hour late costs 1 late day. Note that each homework will be
available for submission on the Moodle system 2 days after the deadline. However, if the accumulated time of
the previous homework submissions exceeds 3 days, the homework will not count.

• (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert it to PDF and name
it homework.pdf. When submitting more than one file, make sure you create a zip archive that contains all
related files, and does not exceed 10 MB. Handwritten parts can be scanned and included or brought (in time)
to Alen’s, Gagandeep’s or Georg’s office. Late homeworks have to be submitted electronically by email to the
fastcode mailing list.

• (Plots)
For plots/benchmarks, provide (concise) necessary information for the experimental setup (e.g.,
compiler and flags) and always briefly discuss the plot and draw conclusions. Follow (at least to a
reasonable extent) the small guide to making plots from the lecture.

• (Code)
When compiling the final code, ensure that you use optimization flags. Disable auto-vectorization for
this exercise when compiling. Under Visual Studio you will find it under Config / Code Generator /
Enable Enhanced Instructions (should be off). With gcc their are several flags: use -mno-abm (check the flag),
-fno-tree-vectorize should also do the job and for icc, the flag -no-vec.

• (Neatness)
5% of the points in a homework are given for neatness.

Exercises:

1. Short project info (10 pts) Go to the list of mile stones for the projects. If you have not done that yet,
please register your project there. Read through the different points and fill in the first two with the
following about your project (be brief):

Point 1) An exact (as much as possible) but also short, problem specification.

For example for MMM, it could be like this:

Our goal is to implement matrix-matrix multiplication specified as follows:

Input: Two real matrices A,B of compatible size, A ∈ Rn×k and B ∈ Rk×m. We may impose
divisibility conditions on n, k,m depending on the actual implementation.
Output: The matrix product C = AB ∈ Rn×m.

Give the name of the algorithm you plan to consider for the problem and a precise reference (e.g.,
a link to a publication plus the page number) that explains it.

Point 2) A very short explanation of what kind of code already exists and in which language it is
written.

263-2300-00 SS17 / Assignment 2
Instructor: Markus Püschel

Pg 1 of 7 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/course.html
https://moodle-app2.let.ethz.ch/course/view.php?id=3122
https://medellin.inf.ethz.ch/courses/263-2300-ETH/


2. Optimization Blockers (20 pts) Code needed
In this exercise, we consider the following short computation:

1 void slowperformance1(double *x, double *y, double *z, int n) {

2 double sum = 0;

3 for (int i = 0; i < n; i = i + 1)

4 for (int k = 0; k < 4; k++)

5 sum += x[i] * y[(i + k) % 5];

6 z[0] = sum; //we to this to avoid deadcode elimination

7 }

This is part of the suplied code.

(a) read and understand the supplied code. It enables you to register functions with the same signa-
ture, which will be timed in a microbenchmark fashion.

(b) Create new functions where you perform some loop unrolling and scalar replacement as discussed
in the lecture to increase the performance. Explore at least three possible choices in this space,
as different as possible.

(c) For every optimization you perform, create a new function in comp.c that has the same signature
as slowperformance1 and register it to the timing framework through the register function function
in comp.cpp. Let it run and, if it verifies, determine the performance.

(d) When done, rerun all code versions also with optimization flags turned off (−O0 in the Makefile).

(e) Create a table with the performance numbers. Two rows (optimization flags, no optimization
flags) and as many columns as versions of slowperformance1. Briefly discuss the table.

(f) Submit your comp.cpp to Moodle.

What speedup do you achieve?

Solution:

The main purpose of this exercise is to observe the impact imposed by using different optimization
flags. Additionally this exercise should also demonstrate that certain optimizations can not be per-
formed by the compiler and therefore require manual intervention.

Without changing the complexity (which was not a strong requirement for this exercise), code that
exhibits maximal performance could take the following form:

-O3 -march -O0

f/c c/n f/c c/n flops

original 0.500 15.998 0.171 46.686 8n
inner loop unroll 0.615 13.000 0.181 44.241 8n
common factor 0.385 12.999 0.167 29.944 5n
pr comp 0.445 4.499 0.177 11.316 2n
pr comp outer loop unroll 2.2281 0.8981 0.216 9.257 2n
MaxPerformance 1.538 0.650 0.171 5.833 5/4n

Table 1: Results submitted by Luca Corinzia, executed on a Skylake CPU: Intel Core i7 6700HQ 2.6 GHz,
compiled using GNU gcc, running Ubuntu 16.04.2 LTS, vectorization disabled with -fno-tree-vectorize,
cycles count scaled by the size of the input arrays. Note that the result obtained here[1] is quite higher than
expected, and we believe that it could be as a result of having Turbo Boost enabled.

263-2300-00 SS17 / Assignment 2
Instructor: Markus Püschel

Pg 2 of 7 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/homeworks/hw02files/blocker.zip


1 void maxperformance_samecomplex(double *x, double *y, double *z, int n)

2 {

3 unsigned short int i;

4 double calc = 0;

5 double sum0 , sum1 , sum2 , sum3 , sum4 , sum5 , sum6 , sum7 , sum8;

6 double y0 = y[0], y1 = y[1], y2 = y[2], y3 = y[3], y4 = y[4];

7
8 for (i = 0; i < n; i = i + 5)

9 {

10 sum0 = x[i] * y0;

11 sum1 = x[i + 1] * y1;

12 sum2 = x[i + 2] * y2;

13 sum3 = x[i + 3] * y3;

14 sum4 = x[i + 4] * y4;

15 sum5 = sum0 + sum1 + sum2 + sum3 + sum4;

16
17 sum0 = x[i] * y1;

18 sum1 = x[i + 1] * y2;

19 sum2 = x[i + 2] * y3;

20 sum3 = x[i + 3] * y4;

21 sum4 = x[i + 4] * y0;

22 sum6 = sum0 + sum1 + sum2 + sum3 + sum4;

23
24 sum0 = x[i] * y2;

25 sum1 = x[i + 1] * y3;

26 sum2 = x[i + 2] * y4;

27 sum3 = x[i + 3] * y0;

28 sum4 = x[i + 4] * y1;

29 sum7 = sum0 + sum1 + sum2 + sum3 + sum4;

30
31 sum0 = x[i] * y3;

32 sum1 = x[i + 1] * y4;

33 sum2 = x[i + 2] * y0;

34 sum3 = x[i + 3] * y1;

35 sum4 = x[i + 4] * y2;

36 sum8 = sum0 + sum1 + sum2 + sum3 + sum4;

37
38 calc = calc + sum5 + sum6 + sum7 + sum8;

39 }

40 // 20 mults , 20 adds - 40 flops / 5 iterations

41 z[0] = calc;

42 }

As shown above, loops are unrolled and tiled such that it becomes possible to remove the modulo
operation and to use several accumulators.

Many of you realized that one can of course also change the algorithmic complexity of the task. Some
of these optimizations decrease performance, as they reduce the number of flops. As long as runtime
gets decreased, such transformations are worth pursuing. A particularly nice solution was submitted
by Luca Corinzia shown in Table 1.

The table clearly shows the relationship of performance and runtime. The runtime is given in cycles
per length of the provided vector x. The accompanying code can be found here: Luca Corinzia’s sub-
mission. It is possible to transform the computation to factor out some of the products in the style of
x[i] ∗ y + x[i + 1] ∗ y = y ∗ (x[i] + x[i + 1]). Luca, in addition, realized that part of computation can be
precomputed and reused within the loop.

3. Microbenchmarks(45 pts) Code needed

Write a program (without vector instruction, i.e, standard C, and compiled without autovectorization)
that benchmarks the latency and throughput of a floating point multiplication and division instructions
on doubles. Use the skeleton available provided and:

263-2300-00 SS17 / Assignment 2
Instructor: Markus Püschel

Pg 3 of 7 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/homeworks/hw02files/comp.cpp
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/homeworks/hw02files/comp.cpp
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/homeworks/hw02files/microbenchmark.zip


• Implement the functions provided in the skeleton:

void microbenchmark_mode (microbenchmark_mode_t mode);

double microbenchmark_get_mul_latency ();

throughput_t microbenchmark_get_mul_throughput ();

double microbenchmark_get_div_latency ();

throughput_t microbenchmark_get_div_throughput ();

• Use microbenchmark mode function bellow for initialization and test modes.

• Report your CPU, operating system and compiler.

• Report any optimization flags that you used.

• Report the results in cycles: latency and throughput, and calculate the gap.

• Generate microbenchmark.s - the assembly version of the benchmark.

• Submit only microbenchmark.c and microbenchmark.s.

Discussion:

(a) Can you reach the theoretical latency / throughput of the instructions?

(b) Does the multiplication instruction exhibit consistent latency / throughput on any input? Do you
observe any changes if one operand is set to 0x0000000000000001? Demonstrate this behaviour
in the MUL2 LATENCY / MUL2 THROUGHPUT mode.

(c) Does the division instruction exhibit consistent latency / throughput on any input? Do you
observe any changes if the divisor is set to 2? Demonstrate this behaviour in the DIV2 LATENCY

/ DIV2 THROUGHPUT mode.

(d) Do you observe any changes when flags like -ffast-math -funsafe-math-optimizations are
enabled. If so, why?

Note that you might have to run the same instruction many times in order to get precise benchmark
results. The code skeleton uses CMake to compile and uses Intel Performance Counter Monitor to
measure performance on Intel based CPUs. If an Intel CPU is not available, it is possible to compile
the code in “failback” mode that uses RDTSC only. In a nutshell, the compilation goes as follows:

cd microbenchmark

mkdir build

cd build

cmake ..

cd ..

cmake --build build --config Release

Then run it, using:

./bin/IntelPCM

For the failback mode:

cd microbenchmark

mkdir build

cd build

cmake -DRDTSC_FAILBACK =1 ..

cd ..

cmake --build build --config Release

The zip bundle contains detailed informations on the compilation steps in Linux / Windows / Mac
OS X, available in README.md, as well as in the doc folder.

Solution:

A possible solution is available here.

263-2300-00 SS17 / Assignment 2
Instructor: Markus Püschel

Pg 4 of 7 Computer Science
ETH Zurich

https://cmake.org/
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/homeworks/hw02files/microbenchmark.c


==============================================
GCC: -O3 -fno -vectorize

==============================================

Measured mul latency : 5.000000 cycles
Measured mul throughput : 1.998135 f/c
Measured mul gap : 0.500467 cycles

Measured div latency : 20.016733 cycles
Measured div throughput : 0.073630 f/c
Measured div gap : 13.581333 cycles

Measured mul2 latency : 130.000000 cycles
Measured mul2 throughput : 0.007671 f/c
Measured mul2 gap : 130.367600 cycles

Measured div2 latency : 10.138600 cycles
Measured div2 throughput : 0.124574 f/c
Measured div2 gap : 8.027333 cycles

(a) fast-math disabled

============================================
GCC: -O3 -fno -vectorize -ffast -math

-funsafe -math -optimizations
============================================

Measured mul latency : 0.000000 cycles
Measured mul throughput : 3.990423 f/c
Measured mul gap : 0.250600 cycles

Measured div latency : 0.668333 cycles
Measured div throughput : 0.073547 f/c
Measured div gap : 13.596667 cycles

Measured mul2 latency : 0.000000 cycles
Measured mul2 throughput : 0.015328 f/c
Measured mul2 gap : 65.239167 cycles

Measured div2 latency : 0.342133 cycles
Measured div2 throughput : 0.124481 f/c
Measured div2 gap : 8.033333 cycles

(b) fast-math enabled

Figure 1: Microbenchmarks executed on Haswell CPU - Intel(R) Core(TM) i7-4980HQ CPU @ 2.80GHz,
running on Mac OS X El Capitan 10.11.6 (15G1217), compiled with gcc version: Apple LLVM version

8.0.0 (clang-800.0.42.1)

(a) By carefully crafting the C code, we are able to achieve latency and throughput which is close to
the theoretical values of the instructions. To achieve as precise results as possible, we wrap the
functions inside a loop, having many iterations, and average the obtained measurements.

While compiling with -O3, the compiler can perform various of optimizations. Most notable for
this particular exercises are loop-invariant code motion and precomputation. To avoid precompu-
tation in the compiler, we define global variables x1 - x16, and we perform the initialization inside
the microbenchmark mode function. To avoid code motion we arrange the instructions inside the
loop, creating artificial dependencies, to force the compiler to keep them inside the loop, or inside
the measurement function.

When translated to machine code, the multiplication results with a mulsd (SSE) or vmulsd (AVX)
instruction. According to the Intel 64 and IA-32 Architectures Optimization Reference Manual,
the theoretical values of mulsd / vmulsd instruction is 5 cycles for latency and 0.5 cycles for the
gap (or 2 multiplications per cycle). We observe consistent behaviour as indicated on Figure 1a.

When division is translated into machine code, it results with a divsd instruction. Theoretical
values for divsd are 14 - 20 cycles for latency and 13 cycles for gap (or 0.076 divisions per cycle).
We also observe consistent behavior for the divsd instruction, as indicated on Figure 1a. Note
that to avoid overflows / underflows when testing the latency of divsd we choose values such that
we perform division with value and then with 1 / value. For throughput mode we set random
numbers, and choose less iterations to avoid underflows.

(b) Note that 0x0000000000000001 does not correspond to 1.0, in fact it corresponds to a very little
double precision floating point value that is close to 4.9406564584e-324. This number is part
of a special category of floating point numbers called “denormals”. Denormals fill the underflow
gap around zero in floating-point arithmetic.

Denormals have a huge penalties while being processed by the SSE / AVX FPUs. We observe this
behaviour in the latency of the mulsd instruction in MUL2 LATENCY mode, having measured latency
and throughtput of 130 cycles, shown on Figure 1a. Intel does not document this behaviour in the
value of latency and throughput, since (after all) denormals represent a small subset of floating

263-2300-00 SS17 / Assignment 2
Instructor: Markus Püschel

Pg 5 of 7 Computer Science
ETH Zurich

https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html


============================================
GCC: Inline assembly
============================================

Measured mul latency : 5.000450 cycles
Measured mul throughput : 1.996577 f/c
Measured mul gap : 0.500857 cycles

Measured div latency : 20.017750 cycles
Measured div throughput : 0.071277 f/c
Measured div gap : 14.029714 cycles

Measured mul2 latency : 141.481600 cycles
Measured mul2 throughput : 0.007662 f/c
Measured mul2 gap : 130.509086 cycles

Measured div2 latency : 10.112750 cycles
Measured div2 throughput : 0.124667 f/c
Measured div2 gap : 8.021371 cycles

Figure 2: Microbenchmark using inline assembly, performed on Haswell CPU, Intel(R) Core(TM) i7-4980HQ
CPU @ 2.80GHz, running on Mac OS X El Capitan 10.11.6 (15G1217), compiled with gcc version: Apple

LLVM version 8.0.0 (clang-800.0.42.1)

point numbers. However this makes mulsd / vmulsd to have variable latency and throughput.

Depending on your compiler, you might not observe this behaviour. Namely Intel CPUs have
special flags for SSE/AVX units, called denormals-are-zero (DAZ) and flush-to-zero (FTZ) flags.
Some compilers enable this flags by default in the generated code, even in -O0 mode. To learn
more about denormals on SSE, check the tutorial, provided by Intel.

The denormal 0x0000000000000001 has a very interesting property. When multiplied with a very
low number (for example 1.2), produces the same result. We use this property when crafting our
C code measurements for both latency and throughput, forcing the compiler to execute multipli-
cation using the same denormal operand on each iteration when measuring.

(c) Division - divsd has a variable latency and throughput, as well as many other CPU instructions.
This is the reason why Intel provides a range for the latency value. The documentation also states
14 - 20 cycles for latency and 13 cycles for gap, but in reality both latency and gap have ranges.
Real latency range for divsd is 10 - 20 cycles, and range for throughput is 8 - 14. Agner Fox has
already documented this behavior available here.

The reason for the variable length is because div instruction is input dependant. Therefore in
our experiment we reach the lower bounds for both latency and throughput, using 2 as a divisor.
Note that 0.5 has also the same properties when used as a divisor, which we take advantage of
when measuring.

(d) Once enabled, -ffast-math -funsafe-math-optimizations perform aggressive optimizations,
that do not preserve IEEE 754 compliance. Some of the optimizations include reordering of in-
structions, loop unrolling, aggressive permutations, reciprocal approximations for division, com-
mon subexpression eliminations and assuming that all math is finite, ignoring denormals and NaNs.
Note that the choice and order of these optimizations strictly depend on the initial C code, the
compiler, and its version. However, if any of those is applied, will definitely break the normal and
expected flow of our measuring infrastructure, leading to better performance. This is the reason
why enabling those flags affects all measurements above, as shown in Figure 1b.

For the enthusiasts:

Assembly is not a requirment for this course. However, for the enthusiasts, we provide an assembly

263-2300-00 SS17 / Assignment 2
Instructor: Markus Püschel

Pg 6 of 7 Computer Science
ETH Zurich

https://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz
http://www.agner.org/optimize/instruction_tables.pdf


version of the solution available here. The code uses inline assembly with AT&T syntax, which was
tested on both clang (Apple) and gcc on Linux. Most of the explanation above remain the same, few
things change:

• Obviously, since we inline the assembly code, -ffast-math and -funsafe-math-optimizations

will not affect the results.

• Once performing the division measurements, we are able to get precise results for both latency
and throughput, reaching the upper and lower bounds in both DIV and DIV2 modes, shown in
Figure 2. This is mainly because the assembly can be written without using the workarounds
required to avoid loop invariant code motion, and precomutation.

• The penalty of processing denormals, can happen in both modes of the mulsd / vmulsd instruction,
either in throughput mode, or latency mode. Without being bound by workarounds of loop
invariant code motion, we demonstrate how this penalty is in fact even higher than 130 cycles in
latency mode, as shown in Figure 2.

263-2300-00 SS17 / Assignment 2
Instructor: Markus Püschel

Pg 7 of 7 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring17/homeworks/hw02files/microbenchmark_asm.c

