The presentation follows the way the program generator ATLAS does it. ATLAS identifies optimization parameters (e.g., the blocking size) and uses search to find the best choices. Alternatively, a model can be used to determine each parameter (see paper or website). We discuss both.

0.) Starting point: standard triple loop

\[
\begin{align*}
N & \quad K \\
\downarrow & \quad K \\
M & \quad N
\end{align*}
\]

\[
\begin{align*}
\text{for } & \quad i = 0 : N-1 \\
\text{for } & \quad j = 0 : M-1 \\
\text{for } & \quad k = 0 : K-1 \\
& \quad c_{ij} = c_{ij} + a_{ik} b_{kj}
\end{align*}
\]

Important cases (from most to least): Based on usage in loops
- two out of \(N, K, M\) are small
- one
- none

1.) Loop order: \(i, j, k\) loops can be permuted into any order
- \(i, j, k\): \(B\) is reused, good if \(M < N\)
- \(j, i, k\): \(A\)
- \(N < M\)

ATLAS includes versions for both
- other choices are bad, e.g., \(k, i, j\):

\[
\begin{array}{ccc}
A & B & C \\
\hline
1 & 1 & 1 \\
\end{array}
\]

poor temporal locality w.r.t. \(C\)

2.) Blocking for cache

\[
\begin{align*}
N_{B} & \quad E \\
\downarrow & \quad E \\
N_{B} & \quad N_{B}
\end{align*}
\]

\[
\begin{align*}
\text{result in a six-fold nested loop}
\end{align*}
\]

assume \(N_{B} \mid N, K, M\)
for i = 0 : \(N_b : N - 1 \)
for j = 0 : \(N_b : N - 1 \)
for k = 0 : \(N_b : N - 1 \)
for i' = \(i + N_b - 1 \)
for j' = \(j + N_b - 1 \)
for k' = \(k + N_b - 1 \)
\[C_{i',j',k'} = C_{i',j',k'} + a_{i',j',k'} \]

Formally obtained from the triple loop through loop tiling & loop exchange

\[\text{min}_i \text{min}_j \text{min}_k \]
\[\text{multiply} \]
\[N_b \times N_b \text{ stocks} \]

ATLAS: uses search to find best \(N_b \)

sound: \(N_b^2 \leq C_i \) (cache law)

Model: explained next, model refined in steps

a.) Idea: working set has to fit in cache
easy bound: \(|\text{working set}| = 3N_b^2 \)
\[\Rightarrow 3N_b^2 \leq C_i \]

\[\frac{N_b}{B_1} \cdot \frac{N_b}{B_1} \] and \(\frac{N_b}{B_2} \cdot \frac{N_b}{B_2} \)

b.) Closer analysis:
\[N_b + N_b + 1 \leq C_i \]
\[\forall a \text{ of } \begin{bmatrix} b \end{bmatrix} \text{ of } c \]

c.) Take into account cache block size \(B \):

\[\left\lfloor \frac{N_b^2}{B_1} \right\rfloor + \left\lfloor \frac{N_b^2}{B_2} \right\rfloor + 1 \leq \frac{C_i}{B_i} \]

(This just translates b.) into cache block units)

d.) Take into account LRU replacement

build a history of elements being accessed

\[\begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} c \end{bmatrix} \]

\[i = 0 \]
\[a_{00} b_{00} \ldots a_{N_b - 1} b_{N_b - 1} c_{00} \]
\[(i = 0) \]
\[a_{00} b_{01} \ldots a_{N_b - 1} b_{N_b - 1} c_{01} \]
\[(i = 1) \]
\[\vdots \]
\[a_{00} b_{0N_b - 1} \ldots a_{N_b - 1} b_{N_b - 1} c_{0N_b - 1} \]
\[(j = N_b - 1) \]

Corresponding history:
\[b_{00} \ldots b_{N_b - 1} c_{00} \]
\[b_{01} \ldots b_{N_b - 1} c_{01} \]
\[\vdots \]
\[b_{0N_b - 1} \ldots a_{N_b - 1} c_{0N_b - 1} \]

more recent
Observations:
- All of b has to fit into cache for next iteration
 \(i = 1 \)
- When \(i = 1 \), row 1 of \(a \) will not cleanly replace row 0 of \(a \)
- When \(i = 1 \), element of \(c \) will not cleanly replace previous elements of \(c \)

\[\Rightarrow \text{This has to fit:} \]
- Entire \(b \)
- 2 rows of \(a \) (here: \(a_{0x}, a_{1x} \))
- 1 row of \(c \) (here: \(c_{0x} \))
- 1 element of \(c \) (here: \(c_{10} \))

\[\Rightarrow \left[\frac{N_{13}^2}{B_1} \right] + 3 \left[\frac{M_{13}^3}{B_1} \right] + 1 \leq \frac{C_i}{B_1} \]

E.) Take into account blocking for registers (next opt.)
\[\left[\frac{N_{13}^2}{B_1} \right] + 3 \left[\frac{M_{13}^3}{B_1} \right] + \left[\frac{M_{13} M_{15}}{B_1} \right] \leq \frac{C_i}{B_1} \]

Pick largest \(N_{13} \) that satisfies, shrink so \(M_{13}, M_{15} / N_{13} \)
(avoides clean-up code)

3.) Blocking mini: \(M_{13} / 7 \) for registers into micro-\(M_{13} / 7 \)
revisit the question of loop order:

\[ijk: \quad \]

for fixed \(i,j \):
- \(2n \) instructions
- \(n \) independent multiplies
- \(n \) dependent adds
\((\geq \log_2(n)) \) steps

\[kij: \quad \]

for fixed \(k \):
- \(2n^2 \) instructions
- \(n^2 \) independent multiplies
- \(n^2 \) adds
\(\Rightarrow \) good ILP (but Flanger working set)

Result: micro-\(M_{13} / 7 \) wih kij loop order for ILP
Code:

```
for \( i = 0 : \text{N}_{3} = \text{N}-1 \)
for \( j = 0 : \text{N}_{3} = \text{N}-1 \)
for \( k = 0 : \text{N}_{3} = \text{K}-1 \)
for \( i' = i : \text{M}_{i} = i + \text{N}_{3} - 1 \)
for \( j' = j : \text{N}_{i} = j + \text{N}_{3} - 1 \)
for \( k' = k : \text{K}_{i} = k + \text{N}_{3} - 1 \)
for \( i'' = i' : i'' = i' + \text{N}_{i} - 1 \)
for \( j'' = j' : j'' = j' + \text{N}_{i} - 1 \)
\( C_{i''j''} = C_{i'j'} + a_{i''k''} b_{i'j'} \)
```

ATLAS: Uses search to find best \(\text{Nu}, \text{Nu}, \text{Nu} \)

Sound: \(\text{Nu} + \text{Nu} + \text{Nu} \text{Nu} \leq \text{N}_{R} \) (# registers)

\(\text{size of working set in } \Theta \)

\(\text{no. of live variables} \)

Model: Use largest \(\text{Nu}, \text{Nu} \) that satisfies this equation

and \(\text{Nu} \leq \text{Nu} \)

4. Basic block optimizations

 step 1: unroll micro-\(\text{HLM} \)
 \(c_{...} = c_{...} + a_{...} b_{...} \)
 \(c_{...} = c_{...} + a_{...} s_{...} \)

 step 2: scalar replacement
 (all elements \(a_{...}, s_{...}, c_{...} \) are reused)
\[\begin{aligned} \text{loa} & \quad \text{d} \\
\text{c} & = c \\
\text{y} & = a \\
\text{y} & = s \\
\vdots & \\
\text{y} & = t_0 + t_1 \text{c} \\
\vdots & \\
\text{c} & = \text{y} \\
\end{aligned} \]

Note: The loads from \(c \ldots \) (\(Nu \) many) are done at \(1 \) in the above code.

The loads from \(a \ldots \) and \(s \ldots \) (\(Nu \) many) are done at \(2 \) in the above code.

\(\Rightarrow \) \(Nu + Nu + Nu Nu \) scalar variables

5.) Other optimizations

a.) "skewing": separating dependent adds - multiplies for better ILP

b.) Software pipelining: Move loads from one iteration to previous iteration (to hide load latency)

c.) Buffering to avoid TCB misses (later)