How to Write Fast Numerical Code
Spring 2016
Lecture: Memory bound computation, sparse linear algebra, OSKI

Instructor: Markus Püschel
TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

ATLAS

Model-Based ATLAS

source: Pingali, Yotov, Cornell U.
Principles

- Optimization for memory hierarchy
 - Blocking for cache
 - Blocking for registers

- Basic block optimizations
 - Loop order for ILP
 - Unrolling + scalar replacement
 - Scheduling & software pipelining

- Optimizations for virtual memory
 - Buffering (copying spread-out data into contiguous memory)

- Autotuning
 - Search over parameters (ATLAS)
 - Model to estimate parameters (Model-based ATLAS)

- All high performance MMM libraries do some of these (but possibly in a different way)

Today

- Memory bound computations
- Sparse linear algebra, OSKI
Memory Bound Computation

- Data movement, not computation, is the bottleneck
- Typically: Computations with operational intensity $I(n) = O(1)$

Memory Bound Or Not? Depends On ...

- The computer
 - Memory bandwidth
 - Peak performance

- How it is implemented
 - Good/bad locality
 - SIMD or not

- How the measurement is done
 - Cold or warm cache
 - In which cache data resides
 - See next slide
Example: BLAS 1, Warm Data & Code

\[z = x + y \text{ on Core i7 (Nehalem, one core, no SSE), } \text{icc 12.0 } /O2 /fp:fast /Qipo \]

Percentage peak performance (peak = 1 add/cycle)

![Graph showing cache performance](graph.png)

- Guess the read bandwidths
- 2 doubles/cycle
- 1 double/cycle
- 1/2 double/cycle
- sum of vector lengths (working set)

Sparse Linear Algebra

- Sparse matrix-vector multiplication (MVM)
- Sparsity/Bebop/OSKI

References:

- Sparsity/Bebop website
Sparse Linear Algebra

- Very different characteristics from dense linear algebra (LAPACK etc.)
- Applications:
 - finite element methods
 - PDE solving
 - physical/chemical simulation (e.g., fluid dynamics)
 - linear programming
 - scheduling
 - signal processing (e.g., filters)
 - ...
- Core building block: Sparse MVM

Sparse MVM (SMVM)

- $y = y + Ax$, A sparse but known

- Typically executed many times for fixed A
- What is reused (temporal locality)?
- Upper bound on operational intensity?
Storage of Sparse Matrices

- Standard storage is obviously inefficient: Many zeros are stored
 - Unnecessary operations
 - Unnecessary data movement
 - Bad operational intensity
- Several sparse storage formats are available
- Most popular: Compressed sparse row (CSR) format
 - blackboard

CSR

- Assumptions:
 - A is m x n
 - K nonzero entries

A as matrix

<table>
<thead>
<tr>
<th>b</th>
<th>c</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A in CSR:

- values: b c c a b b c
- col_idx: 0 1 3 1 2 3 2
- row_start: 0 3 4 6 7

- Storage:
 - K doubles + (K+m+1) ints = Θ(max(K, m))
 - Typically: Θ(K)
Sparse MVM Using CSR

\[y = y + Ax \]

```c
void smvm(int m, const double* values, const int* col_idx,
          const int* row_start, double* x, double* y)
{
    int i, j;
    double d;

    /* loop over m rows */
    for (i = 0; i < m; i++) {
        d = y[i]; /* scalar replacement since reused */

        /* loop over non-zero elements in row i */
        for (j = row_start[i]; j < row_start[i+1]; j++)
            d += values[j] * x[col_idx[j]];

        y[i] = d;
    }
}
```

CSR + sparse MVM: Advantages?

Advantages:
- Only nonzero values are stored
- All three arrays for A (values, col_idx, row_start) accessed consecutively in MVM (good spatial locality)
- Good temporal locality with respect to y

Disadvantages:
- Insertion into A is costly
- Poor temporal locality with respect to x
Impact of Matrix Sparsity on Performance

- Adressing overhead (dense MVM vs. dense MVM in CSR):
 - ~ 2x slower (example only)
- Fundamental difference between MVM and sparse MVM (SMVM):
 - Sparse MVM is input dependent (sparsity pattern of A)
 - Changing the order of computation (blocking) requires changing the data structure (CSR)

Bebop/Sparsity: SMVM Optimizations

- **Idea:** Blocking for registers
- **Reason:** Reuse x to reduce memory traffic
- **Execution:** Block SMVM $y = y + Ax$ into micro MVMs
 - Block size $r \times c$ becomes a parameter
 - Consequence: Change A from CSR to $r \times c$ block-CSR (BCSR)
- **BCSR:** Blackboard
BCSR (Blocks of Size r x c)

- **Assumptions:**
 - A is $m \times n$
 - Block size $r \times c$
 - $K_{r,c}$ nonzero blocks

A as matrix ($r = c = 2$)

```plaintext
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>
```

A in BCSR ($r = c = 2$):

```plaintext
b_values  b c 0 a 0 c 0 0 b b c 0
b_col_idx 0 1 1
b_row_start 0 2 3
length rcK_{r,c}  
length K_{r,c}
length m/r+1
```

- **Storage:**
 - $rcK_{r,c}$ doubles + $(K_{r,c} + m/r+1)$ ints = $\Theta(rcK_{r,c})$
 - $rcK_{r,c} \geq K$

Sparse MVM Using 2 x 2 BCSR

```c
void smvm_2x2(int bm, const int *b_row_start, const int *b_col_idx,
               const double *b_values, double *x, double *y)
{
    int i, j;
    double d0, d1, c0, c1;

    /* loop over bm block rows */
    for (i = 0; i < bm; i++) {
        d0 = y[2*i]; /* scalar replacement since reused */
        d1 = y[2*i+1];

        /* dense micro MVM */
        for (j = b_row_start[i]; j < b_row_start[i+1]; j++) {
            c0 = x[2*b_col_idx[j]+0]; /* scalar replacement since reused */
            c1 = x[2*b_col_idx[j]+1];
            d0 += b_values[0] * c0;
            d1 += b_values[1] * c1;
            d0 += b_values[2] * c0;
            d1 += b_values[3] * c1;
        }
        y[2*i] = d0;
        y[2*i+1] = d1;
    }
}
```
BCSR

- **Advantages:**
 - Temporal locality with respect to x and y
 - Reduced storage for indexes

- **Disadvantages:**
 - Storage for values of A increased (zeros added)
 - Computational overhead (also due to zeros)

- **Main factors (since memory bound):**
 - **Plus:** increased temporal locality on x + reduced index storage
 = reduced memory traffic
 - **Minus:** more zeros = increased memory traffic

Which Block Size (r x c) is Optimal?

Example:
- 20,000 x 20,000 matrix (only part shown)
- Perfect 8 x 8 block structure
- No overhead when blocked r x c, with r, c divides 8

source: R. Vuduc, LLNL
How to Find the Best Blocking for given A?

- Best block size is hard to predict (see previous slide)
- **Solution 1:** Searching over all $r \times c$ within a range, e.g., $1 \leq r, c \leq 12$
 - Conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs
 - Total cost: 1440 SMVMs
 - Too expensive
- **Solution 2:** Model
 - Estimate the gain through blocking
 - Estimate the loss through blocking
 - Pick best ratio

*machine dependent
*hard to predict

Model: Example

Gain by blocking (dense MVM) vs Overhead (average) by blocking:

\[\frac{16}{9} = 1.77 \]

1.4/1.77 = 0.79 (no gain)

Model: Doing that for all r and c and picking best

Model

- **Goal**: find best r x c for \(y = y + Ax \)
- **Gain** through r x c blocking (estimation):
 \[G_{r,c} = \frac{\text{dense MVM performance in } r \times c \text{ BCSR}}{\text{dense MVM performance in CSR}} \]
 dependent on machine, independent of sparse matrix
- **Overhead** through r x c blocking (estimation)
 scan part of matrix A
 \[O_{r,c} = \frac{\text{number of matrix values in } r \times c \text{ BCSR}}{\text{number of matrix values in CSR}} \]
 independent of machine, dependent on sparse matrix
- **Expected gain**: \(G_{r,c} / O_{r,c} \)
Gain from Blocking (Dense Matrix in BCSR)

- machine dependent
- hard to predict

Typical Result

Performance Summary — [pentium3-linux-loc]

- CSR model
- BCSR exhaustive search
- Analytical upper bound
 - how obtained?
 - (blackboard)
Principles in Bebop/Sparsity Optimization

- Optimization for memory hierarchy = increasing locality
 - Blocking for registers (micro-MVMs)
 - Requires change of data structure for A
 - Optimizations are input dependent (on sparse structure of A)
- Fast basic blocks for small sizes (micro-MVM):
 - Unrolling + scalar replacement
- Search for the fastest over a relevant set of algorithm/implementation alternatives (parameters r, c)
 - Use of performance model (versus measuring runtime) to evaluate expected gain

Different from ATLAS

SMVM: Other Ideas

- Cache blocking
- Value compression
- Index compression
- Pattern-based compression
- Special scenario: Multiple inputs
Cache Blocking

- **Idea:** divide sparse matrix into blocks of sparse matrices

- **Experiments:**
 - Requires very large matrices (x and y do not fit into cache)
 - Speed-up up to 2.2x, only for few matrices, with 1 x 1 BCSR

Value Compression

- **Situation:** Matrix A contains many duplicate values
- **Idea:** Store only unique ones plus index information

Kourtis, Goumas, and Kaziris, Improving the Performance of Multithreaded Sparse Matrix-Vector Multiplication using Index and Value Compression, pp. 511-519, ICPP 2008
Index Compression

- **Situation:** Matrix A contains sequences of nonzero entries
- **Idea:** Use special byte code to jointly compress col_idx and row_start

![Coding Diagram]

Decoding

```
0: acc = acc + 256 + arg;
1: col = col + acc + 256 + arg; acc = 0;
    emit_element(row, col);
2: col = col + acc + 256 + arg; acc = 0;
    emit_element(row, col);
3: col = col + acc + 256 + arg; acc = 0;
    emit_element(row, col);
4: col = col + acc + 256 + arg; acc = 0;
    emit_element(row, col);
5: row = row + 1; col = 0;
```

Willcock and Lumsdaine, Accelerating Sparse Matrix Computations via Data Compression, pp. 307-316, ICS 2006

Pattern-Based Compression

- **Situation:** After blocking A, many blocks have the same nonzero pattern
- **Idea:** Use special BCSR format to avoid storing zeros; needs specialized micro-MVM kernel for each pattern

```
A as matrix

b  c  c
a
b  b  c

Values in 2 x 2 BCSR

b  c  a  0  c  0  0  b  b  c

Values in 2 x 2 PBR

b  c  a  b  b  c

+ bit string: 1101 0100 1110
```

Belgin, Back, and Ribbens, Pattern-based Sparse Matrix Representations for Memory-Efficient SMVM Kernels, pp. 100-109, ICS 2009
Special scenario: Multiple inputs

- Situation: Compute SMVM $y = y + Ax$ for several independent x
- Blackboard
- Experiments:
 - up to 9x speedup for 9 vectors