How to Write Fast Numerical Code
Spring 2016
Lecture: Optimization for Instruction-Level Parallelism

Instructor: Markus Püschel
TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

Organizational

- Midterm: *April 20th*
- Projects
How To Make Code Faster?

- It depends!
- Memory bound: Reduce memory traffic
 - Reduce cache misses, register spills
 - Compress data
- Compute bound: Keep floating point units busy
 - Reduce cache misses, register spills
 - Instruction level parallelism (ILP)
 - Vectorization
- Next: Optimizing for ILP (an example)

Part of these slides are adapted from the course associated with this book

Superscalar Processor

- Definition: A superscalar processor can issue and execute *multiple instructions in one cycle*. The instructions are retrieved from a sequential instruction stream and are usually scheduled dynamically.

- Benefit: Superscalar processors can take advantage of *instruction level parallelism (ILP)* that many programs have

- Most CPUs since about 1998 are superscalar
- Intel: since Pentium Pro
ILP

Code
\[t_2 = t_0 + t_1 \]
\[t_5 = t_4 * t_3 \]
\[t_6 = t_2 + t_5 \]

Dependencies
\[t_6 = t_2 + t_5 \]
\[t_2 = t_0 + t_1 \]
\[t_5 = t_4 * t_3 \]

can be executed in parallel and in any order

Hard Bounds: Pentium 4 vs. Core 2

- **Pentium 4 (Nocona)**

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Latency</th>
<th>Cycles/Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load / Store</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Integer Multiply</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Integer/Long Divide</td>
<td>36/106</td>
<td>36/106</td>
</tr>
<tr>
<td>Single/Double FP Multiply</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Single/Double FP Add</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Single/Double FP Divide</td>
<td>32/46</td>
<td>32/46</td>
</tr>
</tbody>
</table>

- **Core 2**

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Latency</th>
<th>Cycles/Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load / Store</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Integer Multiply</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Integer/Long Divide</td>
<td>18/50</td>
<td>18/50</td>
</tr>
<tr>
<td>Single/Double FP Multiply</td>
<td>4/5</td>
<td>1</td>
</tr>
<tr>
<td>Single/Double FP Add</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Single/Double FP Divide</td>
<td>18/32</td>
<td>18/32</td>
</tr>
</tbody>
</table>

\[\frac{1}{\text{Throughput}} = \frac{1}{\text{Cycles/Issue}} \]
Hard Bounds (cont’d)

- **How many cycles at least if**
 - Function requires \(n \) float adds?
 - Function requires \(n \) int mults?
Example Computation (on Pentium 4)

```c
void combine4(vec_ptr v, data_t *dest)
{
    int i;
    int length = vec_length(v);
    data_t *d = get_vec_start(v);
    data_t t = IDENT;
    for (i = 0; i < length; i++)
        t = t OP d[i];
    *dest = t;
}
```


data_t: float or double or int

OP: + or *
IDENT: 0 or 1

Runtime of Combine4 (Pentium 4)

- Use cycles/OP

```c
void combine4(vec_ptr v, data_t *dest)
{
    int i;
    int length = vec_length(v);
    data_t *d = get_vec_start(v);
    data_t t = IDENT;
    for (i = 0; i < length; i++)
        t = t OP d[i];
    *dest = t;
}
```

Questions:
- Explain red row
- Explain gray row

<table>
<thead>
<tr>
<th>Method</th>
<th>Int (add/mult)</th>
<th>Float (add/mult)</th>
</tr>
</thead>
<tbody>
<tr>
<td>combine4</td>
<td>2.2</td>
<td>10.0</td>
</tr>
<tr>
<td>bound</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Cycles per OP
Combine4 = Serial Computation (OP = *)

- Sequential dependence = no ILP!

 Hence: performance determined by latency of OP!

<table>
<thead>
<tr>
<th>Cycles per element (or per OP)</th>
<th>Method</th>
<th>Int (add/mult)</th>
<th>Float (add/mult)</th>
</tr>
</thead>
<tbody>
<tr>
<td>combine4</td>
<td>2.2</td>
<td>10.0</td>
<td>5.0</td>
</tr>
<tr>
<td>bound</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Loop Unrolling

```c
void unroll2(vec_ptr v, data_t *dest)
{
    int length = vec_length(v);
    int limit = length-1;
    data_t *d = get_vec_start(v);
    data_t x = IDENT;
    int i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i += 2)
        x = (x OP d[i]) OP d[i+1];
    /* Finish any remaining elements */
    for (; i < length; i++)
        x = x OP d[i];
    *dest = x;
}
```

- Perform 2x more useful work per iteration
Effect of Loop Unrolling

<table>
<thead>
<tr>
<th>Method</th>
<th>Int (add/mult)</th>
<th>Float (add/mult)</th>
</tr>
</thead>
<tbody>
<tr>
<td>combine4</td>
<td>2.2</td>
<td>10.0</td>
</tr>
<tr>
<td>unroll2</td>
<td>1.5</td>
<td>10.0</td>
</tr>
<tr>
<td>bound</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- Helps integer sum
- Others don’t improve. \textit{Why?}
 - Still sequential dependency
 \[x = (x \text{ OP } d[i]) \text{ OP } d[i+1]; \]

Loop Unrolling with Separate Accumulators

```c
void unroll2_sa(vec_ptr v, data_t *dest)
{
    int length = vec_length(v);
    int limit = length - 1;
    data_t *d = get_vec_start(v);
    data_t x0 = IDENT;
    data_t x1 = IDENT;
    int i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i += 2) {
        x0 = x0 \text{ OP } d[i];
        x1 = x1 \text{ OP } d[i+1];
    }
    /* Finish any remaining elements */
    for (; i < length; i++)
        x0 = x0 \text{ OP } d[i];
    *dest = x0 \text{ OP } x1;
}
```

- Can this change the result of the computation?
- \textit{Floating point: yes!}
Effect of Separate Accumulators

<table>
<thead>
<tr>
<th>Method</th>
<th>Int (add/mult)</th>
<th>Float (add/mult)</th>
</tr>
</thead>
<tbody>
<tr>
<td>combine4</td>
<td>2.2</td>
<td>10.0</td>
</tr>
<tr>
<td>unroll2</td>
<td>1.5</td>
<td>10.0</td>
</tr>
<tr>
<td>unroll2-sa</td>
<td>1.50</td>
<td>5.0</td>
</tr>
<tr>
<td>bound</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- Almost exact 2x speedup (over unroll2) for Int *, FP +, FP *
 - Breaks sequential dependency

 \[
 \begin{align*}
 x_0 &= x_0 \text{ OP } d[i]; \\
 x_1 &= x_1 \text{ OP } d[i+1];
 \end{align*}

Separate Accumulators

- What changed:
 - Two independent “streams” of operations

- Overall Performance
 - N elements, D cycles latency/op
 - Should be \((N/2+1)D\) cycles:
 \[
 \text{cycles per OP} \approx \frac{D}{2}
 \]

What Now?
Unrolling & Accumulating

- **Idea**
 - Use K accumulators
 - Increase K until best performance reached
 - Need to unroll by L, K divides L

- **Limitations**
 - Diminishing returns:
 - Cannot go beyond throughput limitations of execution units
 - Large overhead for short lengths: Finish off iterations sequentially

Unrolling & Accumulating: Intel FP *

- **Case**
 - Pentium 4
 - FP Multiplication
 - Theoretical Limit: 2.00

<table>
<thead>
<tr>
<th>FP *</th>
<th>Unrolling Factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>7.00</td>
</tr>
<tr>
<td>2</td>
<td>3.50</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Why 4?
Why 4?

Latency: 7 cycles

Those have to be independent

1/Throughput: 2 cycles

Based on this insight: \[K = \#\text{accumulators} = \text{ceil}(\text{latency}/\text{cycles per issue}) \]

Unrolling & Accumulating: Intel FP +

- Case
 - Pentium 4
 - FP Addition
 - Theoretical Limit: 2.00

<table>
<thead>
<tr>
<th>K</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unrolling & Accumulating: Intel Int *

- **Case**
 - Pentium 4
 - Integer Multiplication
 - Theoretical Limit: 1.00

<table>
<thead>
<tr>
<th>Int *</th>
<th>Unrolling Factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>10.0</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>3.3</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td>6</td>
<td>1.67</td>
</tr>
<tr>
<td>8</td>
<td>1.25</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Unrolling & Accumulating: Intel Int +

- **Case**
 - Pentium 4
 - Integer Addition
 - Theoretical Limit: 1.00

<table>
<thead>
<tr>
<th>Int +</th>
<th>Unrolling Factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>1.34</td>
</tr>
<tr>
<td>4</td>
<td>1.1</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Summary (ILP)

- **Instruction level parallelism may have to be made explicit in program**

- **Potential blockers for compilers**
 - Reassociation changes result (FP)
 - Too many choices, no good way of deciding

- **Unrolling**
 - By itself does often nothing (branch prediction works usually well)
 - But may be needed to enable additional transformations (here: reassociation)

- **How to program this example?**
 - Solution 1: program generator generates alternatives and picks best
 - Solution 2: use model based on latency and throughput