
263-2300-00: How To Write Fast Numerical Code
Assignment 1: 100 points

Due Date: Fr, March 11th, 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html

Questions: fastcode@lists.inf.ethz.ch

Submission instructions (read carefully):

• (Submission)
Homework is submitted through the Moodle system https://moodle-app2.let.ethz.ch/course/view.php?id=2125.
Before submission, you must enroll in the Moodle course.

• (Late policy)
You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours
after the due time. For example, submitting 1 hour late costs 1 late day. Note that each homework will be
available for submission on the Moodle system 2 days after the deadline. However, if the accumulated time of
the previous homework submissions exceeds 3 days, the homework will not count.

• (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert it to PDF and name
it homework.pdf. When submitting more than one file, make sure you create a zip archive that contains all
related files, and does not exceed 10 MB. Handwritten parts can be scanned and included or brought (in time)
to Alen’s or Gagandeep’s office. Late homeworks have to be submitted electronically by email to the fastcode
mailing list.

• (Plots)
For plots/benchmarks, provide (concise) necessary information for the experimental setup (e.g.,
compiler and flags) and always briefly discuss the plot and draw conclusions. Follow (at least to a
reasonable extent) the small guide to making plots from the lecture.

• (Code)
When compiling the final code, ensure that you use optimization flags. Disable SSE/AVX for this exercise
when compiling. Under Visual Studio you will find it under Config / Code Generator / Enable Enhanced
Instructions (should be off). With gcc their are several flags: use -mno-abm (check the flag), -fno-tree-vectorize
should also do the job.

• (Neatness)
5% of the points in a homework are given for neatness.

Exercises:

1. (15 pts) Get to know your machine
Determine and create a table for the following microarchitectural parameters of your computer.

(a) Processor manufacturer, name, and number

(b) Number of CPU cores

(c) CPU-core frequency

(d) Tick or tock model?

For one core and without considering SSE/AVX:

(d) Cycles/issue for floating point additions

(e) Cycles/issue for floating point multiplications

(f) Maximum theoretical floating point peak performance in both flop/cycle and Gflop/s.

Tips: On Unix/Linux systems, typing ’cat /proc/cpuinfo’ in a shell will give you enough information
about your CPU for you to be able to find an appropriate manual for it on the manufacturer’s website
(typically AMD or Intel). The manufacturer’s website will contain information about the on-chip
details. (e.g. Intel). For Windows 7 ”Control Panel/System and Security/System” will show you your
CPU, for more info ”CPU-Z” will give a very detailed report on the machine configuration. For Mac
OS X there is ”MacCPUID.”
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2. (15 pts) CPU Identification using cpuid

In this exercise we would like to implement a simplified version of CPU-Z and /proc/cpuinfo. The
cpuid instruction can be used to query the CPU and provide information for CPU identification. This
instruction is invoked by previously specifying the value of the eax register (and sometimes the ecx

register). The output of the function is then stored in one or several of the eax, ebx, ecx and edx

registers. Use the skeleton available here and provide the implementation for the following functions:

(a) CPU vendor ID, model & family

(b) CPU brand name

(c) CPU feature flags (SSE, SSE2, SSE3, SSSE3, SSE41, AVX, AVX2)

For this task is sufficient to support Intel processors only. If you do not own an Intel based CPU, use the
public student labs of D-INFK, or the login servers (optimus6.inf.ethz.ch or optimus7.inf.ethz.ch).
Note that Intel provides an extensive manual for CPU identification. Submit only detect.c

Solution:
One possible solution is available here.

3. (10 pts) Cost analysis

For a given number n, such that n > 1 consider the following algorithm:

1 double calc (int n) {

2 int a[n+1]; double d = 0;

3 for (int i = 1; i <= n; i += 1) a[i] = 0;

4 for (int i = 1; i <= n; i += 1)

5 for (int j = i; j <= n; j += i) a[j] = !a[j];

6 for (int i = 1; i <= n; i += 1)

7 if (a[i]) d += 1.0 / (double) i;

8 return d;

9 }

(a) Define a (floating point) cost measure C(n) assuming that different floating point operations have
different costs.

(b) Compute the cost C(n) of the function calc.

Solution:

(a) The algorithm given by the function calc has floating division and addition. Therefore:

C(n) = Cfadd ·Nfadd + Cfdiv ·Nfdiv

(b) Observing the code, we see that lines 1-5 set 1 to all elements of a[i] such that i = p2 where p
is an integer. To determine the iteration of the loop at line 6, we need to determine the count of
all numbers i such that i = p2 and i <= n, where p is an integer. Therefore:

Nfadd = Nfdiv = b 2
√
nc

C(n) = (Cfadd + Cfdiv) · b 2
√
nc

4. (15 pts) Matrix multiplication

In this exercise, we provide a C source file for multplying two matrices of size n and a C header file that
times matrix multiplication using different methods under Windows and Linux (for x86 compatibles).

(a) Inspect and understand the code.
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Pg 2 of 7 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/homeworks/hw01files/cpuid.zip
https://software.intel.com/en-us/articles/intel-architecture-and-processor-identification-with-cpuid-model-and-family-numbers
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/homeworks/hw01files/detect-refsol.c
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/homeworks/hw01files/mmm.c
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/homeworks/hw01files/tsc_x86.h


(b) Determine the exact number of (floating point) additions and multiplications performed by the
compute() function in mmm.c.

(c) Using your computer, compile and run the code (Remember to turn off vectorization as explained
on page 1!). Ensure you get consistent timings between timers and for at least two consecutive
executions.

(d) Then, for all square matrices of sizes n between 100 and 1500, in increments of 100, create a plot
for the following quantities (one plot per quantity, so 3 plots total). n is on the x-axis and on the
y-axis is, respectively,

i. Runtime (in cycles).

ii. Performance (in flops/cycle).

iii. Using the data from exercise 1, percentage of the peak performance (without vector instruc-
tions) reached.

(e) Briefly discuss your plots.

Solution:

Intel(R) Core(TM) i7-4771 CPU @ 3.50GHz
L1: 32KB, L2: 256KB, L3: 8MB

Compiler: gcc 5.2.1 20151010, OS: Ubuntu 16.04
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Figure 1: Plots resulting from execution of mmm.c on a Haswell CPU (scalar peak performance: 4 f/c). The
code was compiled with gcc 5.2.1 with O3 enabled, no FMAs and no vectorization.

(b) The code performs 2n3 floating point operations.

(d) See Fig. 1 for part (i) and (ii). The Plot for (iii) is same as for (ii) but with data on y-axis scaled
by factor of 25.

(e) The computation is compute bound however, due to dependency in the computation the peak
performance cannot be achieved. Every iteration of i -loop loads matrix C, thus the performance
drops whenever C does not fit in L2 (n > 181) and L3 (n > 1024) cache.

5. (20 pts) Performance Analysis
Assume that the elements of vectors u, v, x, y and z of length n are combined as follows:

zi = zi + ui · vi + xi · yi .

(a) Write a C/C++ compute() function that performs the computation described above on arrays of
doubles. Save the file as combine.c(pp).
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(b) Within the same file create a benchmarking infrastructure based on the timing function that
produces the most consistent results in Exercise 4.

(c) Then, for all two-power sizes n = 24, . . . , 222 create a performance plot with n on the x-axis
(choose logarithmic scale) and performance (in flops/cycle) on the y-axis. Randomly initialize all
arrays. For all n repeat your measurements 30 times reporting the median in your plot.

(d) Briefly explain eventual performance variations in your plot.

(e) Assume that the vectors are now combined as follows:

zi = zi + ui · vi + xi · yi + ui · yi + xi · vi + ui · xi .

Create another performance plot following the instructions in 5c. Briefly explain the performance
behaviours and any differences in performance compared to the previous function.

Solution

As a possible solution, we consider the scalar execution of compute() on a Sandy Bridge CPU1.

(a-b) See the file combine.cpp.

(c) See Fig. 2(a).

(d) The code is always bound by data movement:

• When data fits in L1, performance is bound by 1.5 f/c. On Sandy Bridge we can either issue
two loads or one load and one store at any given cycle (on port 2 and 3 of the execution
core) with an average bandwidth of 1.5 doubles per cycle. The runtime for the computation
is therefore approximately 5n doubles/1.5 doubles/c = 3.3n cycles.

• When data fits in L2 we can fetch at most 1 double per cycle from L2 bounding the runtime
to 5n cycles and therefore performance by 0.8 f/c.

• Also from L3 we can fetch at most 1 double per cycle, not introducing any further bottleneck.

• Note that full bandwidth for the three levels of cache (i.e., 48 B/c for L1 and 32 B/c for
L2/L3) can only be approached by using 256-bit memory accesses (with AVX instructions).

• When data exceeds the last-level cache size the runtime becomes bound by the off-chip band-
width (10n cycles).

e See Fig. 2(b). In this case the new function computes f = 10n flops. The major difference
comparing with the initial function is that the new one is bound by the computation runtime
whenever data fit in any level of cache:

L1 :
10n flops

2 f/c
= 5n cycles >

5n doubles

1.5 doubles/c
= 3.3n cycles

L2-L3 :
10n flops

2 f/c
= 5n cycles =

5n doubles

1 double/c
= 5n cycles

RAM :
10n flops

2 f/c
= 5n cycles <

5n doubles

0.5 double/c
= 10n cycles

6. (20 pts) Bounds

Consider the below modified version of the Horner’s algorithm for evaluating polynomials. The function
operates on two matrices and stores the results in an output array:

1 // assume cA, cB and res are properly initialized

2 void horner (float x, float y, int n, float * cA [], float * cB [], float * res) {

3 for (int i = 0; i < n; i += 1) {

4 float d1 = 0.0, d2 = 0.0; d3 = 0.0;

5 for (int j = n - 1; j >= 0; j -= 1) {

6 d1 = d1 * x + cA[i][j];

7 d2 = d2 * y - cB[j][i];

1For technical details we refer to the Intel Optimization Manual, Sec. 2.3.
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Figure 2: Plots resulting from execution of combine.cpp. The code was compiled with icc v.15 and executed
on a Sandy Bridge CPU (Intel Core i7-2600: 32 kB L1-D, 256 kB L2, 8 MB L3; scalar peak performance: 2
f/c; L1 tp: 1.5 doubles/c; L2/L3 tp: 1 double/c; RAM tp: 0.5 double/c.

8 d3 += d1 / d2;

9 }

10 res[i] = d3;

11 }

12 }

We consider a Core i7 CPU based on a Haswell processor. It offers (as part of AVX2) a so-called
fused multiply-add instruction, called FMA, that computes y = a * x + b on floating point numbers.
Further it offers an instruction (called RCP) that approximates 1/x using Newton-Raphson step. The
FMA on Haswell is as fast multiplication, meaning the throughput is two per cycle; the RCP one per
cycle.

More information on these instruction and the load bandwidth od the caches in the memory hierarchy
can be found in Intel 64 and IA-32 Architectures Optimization Reference Manual. Assume that the
load bandwidth from L3 cache is half the one of L2 cache and that the load bandwidth from RAM is
half that of the L3 cache.

(a) Determine the exact cost measured in the abovementioned two operations.

(b) Determine an asymptotic upper bound on the operational intensity (assuming empty caches and
considering both reads and writes).

(c) Consider only one core and determine hard lower bounds (not asymptotic) on the runtime (mea-
sured in cycles):

i. The op count. Assume that the code is compiled using gcc with the following flags:
-ffast-math -fno-tree-vectorize -mfma -march=core-avx2 -mrecip=all -O3 and that
FMAs are used as much as possible.

ii. Loads, for each of the following cases: All floating point data is L1-resident, L2-resident,
L3-resident, and RAM-resident. Consider best case scenario (peak bandwidth).

(d) (enthusiast; no points) Harden the ops-based lower bound by also taking into account the latency
of the operations used and their dependencies in the code.

Solution:

(a) Note that the use of RCP transforms line 8 as: d3 = d1 * (1 / d2) + d3 - which is another FMA
instruction. Since FMA does addition and multiplication, it is counted as two flops. Therefore
C(N) = N2 · (2 · 3 + 1) = 7 ·N2.
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(b) I(N) = 7·N2

4·(2·N2+N) flops/B. Therefore I(N) ∈ O(1)

(c) i. There are N2 iterations, and in each iteration we have 3 FMAs and one RCP. There are two
FMA units on Haswell on different ports, and one RCP unit, that shares a port with one
FMA. Therefore, ignoring the dependencies - in the best case scenario, 2 ·N2 FMAs can be
executed in parallel, in N2 cycles, and the rest of RCP and FMA can be executed in parallel
also in N2 cycles. Therefore lower bound is 2 ·N2

ii. Intel 64 and IA-32 Architectures Optimization Reference Manual (section 2.2.4 Cache and
Memory Subsystem) suggests that peak bandwidth of L1 and L2 is 64 bytes / cycle. Therefore
tpL1 = tpL2 = 16 floats/cycle.

rL1 = rL2 =
2 ·N2

16
, rL3 =

2 ·N2

8
, rRAM =

2 ·N2

4

(d) To harden the bound, we take into consideration the dependencies imposed on the FMAs and
RCP. Obviously, even if we disregard line 8, the FMAs on lines 6 & 7, will be forced to run in
latency mode. Therefore we will need at least 5 ·N2 cycles. However, the combination of FMAs
and RCP, does not force the whole algorithm to run in latency mode.

Haswell, has two ports with FMA units, namely Port 0 and Port 1. RCP is located on Port 0
(since it is part of the DIV unit) and since we deal with non-vectorized code, it has latency of 5
cycles (using rcpss instruction). Compiling the code with -O3 might hint gcc to unroll the loop
fully or partially. Then it takes up to the CPU out of order execution engine to take over, and
reorder the instructions for best performance. Note that if we execute FMAs on one port only,
then all FMAs will work in throughput mode, whenever possible.

Since we need to calculate lower bounds, lets assume a perfect out of order execution and consider
Figure 3. We can start executing the FMA that calculates d2, followed by the one that calculates
d1. Since those are pipelined on the same port, d2 will be available after 5 cycles, and d1 after
6 cycles. After the 5th cycles, d2 from the next iteration gets inside the pipeline, followed by d1

from the same iteration. Meanwhile in the 5th cycles, RCP gets executed on Port 0. And after 5
cycles (10 from the start of the iteration), we have already calculated 1/d2. At this point in time,
d2 and d1 are already in the pipeline execution of Port 1, and we need to wait for 2 more cycles,
till d3 is placed in the pipeline. Meanwhile, d2 and d1 from the second iteration of the innermost
loop have become available, and we can proceed executing RCP from the second iteration. And
so on and so forth.

This means that while all FMAs are going to operate in throughput mode (whenever possible),
RCP will only operate in latency mode. Therefore the hardened lower bound will be:

5 + 5 ·N2 + 7 = 12 + 5 ·N2 cycles
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d2 = FMA - (i,j): (0,0) d2 = FMA - (i,j): (0,1) d2 = FMA - (i,j): (0,2) d2 = FMA - (i,j): (0,3) d2 = FMA - (i,j): (0,4) d2 = FMA - (i,j): (0,5)

d1 = FMA - (i,j): (0,0) d1 = FMA - (i,j): (0,1) d1 = FMA - (i,j): (0,2) d1 = FMA - (i,j): (0,3) d1 = FMA - (i,j): (0,4) d1 = FMA - (i,j): (0,5)

d3 = FMA - (i,j): (0,0) d3 = FMA - (i,j): (0,1) d3 = FMA - (i,j): (0,2) d3 = FMA - (i,j): (0,3)

1/d2 = RCP - (i,j): (0,0) 1/d2 = RCP - (i,j): (0,2)1/d2 = RCP - (i,j): (0,1) 1/d2 = RCP - (i,j): (0,4)1/d2 = RCP - (i,j): (0,3)

Port 1

Port 0

Figure 3: Optimal out of order execution of the horner function. Each color represents a complete execution
of the computation contained in a single iteration of the innermost loop.
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