How to Write Fast Numerical Code
Spring 2015
Lecture: Optimization for Instruction-Level Parallelism

Instructor: Markus Püschel
TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

Organizational
- Midterm: April 15th
- Office hours fixed
- Projects
How To Make Code Faster?

- It depends!
- Memory bound: Reduce memory traffic
 - Reduce cache misses, register spills
 - Compress data
- Compute bound: Keep floating point units busy
 - Reduce cache misses, register spills
 - Instruction level parallelism (ILP)
 - Vectorization
- Next: Optimizing for ILP (an example)

Part of these slides are adapted from the course associated with this book

Superscalar Processor

- **Definition:** A superscalar processor can issue and execute *multiple instructions in one cycle*. The instructions are retrieved from a sequential instruction stream and are usually scheduled dynamically.

- **Benefit:** Superscalar processors can take advantage of *instruction level parallelism (ILP)* that many programs have

- Most CPUs since about 1998 are superscalar
- Intel: since Pentium Pro
ILP

Code
- \(t_2 = t_0 + t_1 \)
- \(t_5 = t_4 \times t_3 \)
- \(t_6 = t_2 + t_5 \)

Dependencies
- \(t_6 = t_2 + t_5 \)

- \(t_2 = t_0 + t_1 \)
- \(t_5 = t_4 \times t_3 \)

Can be executed in parallel and in any order.

Hard Bounds: Pentium 4 vs. Core 2

- **Pentium 4 (Nocona)**
 - **Instruction**
 - Load / Store: 5 cycles, 1 cycle
 - Integer Multiply: 10 cycles, 1 cycle
 - Integer/Long Divide: 36/106 cycles, 36/106 cycles
 - Single/Double FP Multiply: 7 cycles, 2 cycles
 - Single/Double FP Add: 5 cycles, 2 cycles
 - Single/Double FP Divide: 32/46 cycles, 32/46 cycles

- **Core 2**
 - **Instruction**
 - Load / Store: 5 cycles, 1 cycle
 - Integer Multiply: 3 cycles, 1 cycle
 - Integer/Long Divide: 18/50 cycles, 18/50 cycles
 - Single/Double FP Multiply: 4/5 cycles, 1 cycle
 - Single/Double FP Add: 3 cycles, 1 cycle
 - Single/Double FP Divide: 18/32 cycles, 18/32 cycles
How to write fast numerical code

Hard Bounds (cont’d)

- How many cycles at least if
 - Function requires n float adds?
 - Function requires n int mults?

<table>
<thead>
<tr>
<th>Single/Double FP Multiply</th>
<th>7</th>
<th>2</th>
</tr>
</thead>
</table>

1/Throughput: 2 cycles
Example Computation (on Pentium 4)

```c
void combine4(vec_ptr v, data_t *dest)
{
    int i;
    int length = vec_length(v);
    data_t *d = get_vec_start(v);
    data_t t = IDENT;
    for (i = 0; i < length; i++)
    { t = t OP d[i];
        *dest = t;
    }
}
```

\[d[0] \text{ OP } d[1] \text{ OP } d[2] \text{ OP } \ldots \text{ OP } d[length-1]\]

data_t: float or double or int

OP: \ + \ or \ *
IDENT: 0 or 1

Runtime of Combine4 (Pentium 4)

- **Use cycles/OP**

```c
void combine4(vec_ptr v, data_t *dest)
{
    int i;
    int length = vec_length(v);
    data_t *d = get_vec_start(v);
    data_t t = IDENT;
    for (i = 0; i < length; i++)
    { t = t OP d[i];
        *dest = t;
    }
}
```

- **Questions:**
 - Explain red row
 - Explain gray row

<table>
<thead>
<tr>
<th>Method</th>
<th>Int (add/mult)</th>
<th>Float (add/mult)</th>
</tr>
</thead>
<tbody>
<tr>
<td>combine4</td>
<td>2.2</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>7.0</td>
</tr>
<tr>
<td>bound</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Combine4 = Serial Computation (OP = *)

Sequential dependence = no ILP!

Hence: performance determined by latency of OP!

<table>
<thead>
<tr>
<th>Method</th>
<th>Int (add/mult)</th>
<th>Float (add/mult)</th>
</tr>
</thead>
<tbody>
<tr>
<td>combine4</td>
<td>2.2</td>
<td>10.0</td>
</tr>
<tr>
<td>bound</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Loop Unrolling

```c
void unroll2(vec_ptr v, data_t *dest) {
  int length = vec_length(v);
  int limit = length-1;
  data_t *d = get_vec_start(v);
  data_t x = IDENT;
  int i;
  /* Combine 2 elements at a time */
  for (i = 0; i < limit; i += 2)
    x = (x OP d[i]) OP d[i+1];
  /* Finish any remaining elements */
  for (; i < length; i++)
    x = x OP d[i];
  *dest = x;
}
```

- Perform 2x more useful work per iteration
Effect of Loop Unrolling

<table>
<thead>
<tr>
<th>Method</th>
<th>Int (add/mult)</th>
<th>Float (add/mult)</th>
</tr>
</thead>
<tbody>
<tr>
<td>combine4</td>
<td>2.2</td>
<td>10.0</td>
</tr>
<tr>
<td>unroll2</td>
<td>1.5</td>
<td>10.0</td>
</tr>
<tr>
<td>bound</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- Helps integer sum
- Others don’t improve. Why?
 - Still sequential dependency

```
x = (x OP d[i]) OP d[i+1];
```

Loop Unrolling with Reassociation

```c
void unroll2_ra(vec_ptr v, data_t *dest)
{
    int length = vec_length(v);
    int limit = length-1;
    data_t *d = get_vec_start(v);
    data_t x = IDENT;
    int i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i += 2)
        x = x OP (d[i] OP d[i+1]);
    /* Finish any remaining elements */
    for (; i < length; i++)
        x = x OP d[i];
    *dest = x;
}
```

- Can this change the result of the computation?
- Yes, for FP. Why?
Effect of Reassociation

<table>
<thead>
<tr>
<th>Method</th>
<th>Int (add/mult)</th>
<th>Float (add/mult)</th>
</tr>
</thead>
<tbody>
<tr>
<td>combine4</td>
<td>2.2</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>7.0</td>
</tr>
<tr>
<td>unroll2</td>
<td>1.5</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>7.0</td>
</tr>
<tr>
<td>unroll2-ra</td>
<td>1.56</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>2.75</td>
<td>3.62</td>
</tr>
<tr>
<td>bound</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

- Nearly 2x speedup for Int *, FP +, FP *
 - Why is that? (next slide)

Reassociated Computation

```
x = x OP (d[i] OP d[i+1]);
```

- Breaks sequential dependency
- Overall Performance
 - N elements, D cycles latency/op
 - Should be (N/2+1)*D cycles:
 - cycle per OP = D/2
 - Measured is slightly worse for FP
Loop Unrolling with Separate Accumulators

```c
void unroll2_sa(vec_ptr v, data_t *dest)
{
    int length = vec_length(v);
    int limit = length-1;
    data_t *d = get_vec_start(v);
    data_t x0 = IDENTITY;
    data_t x1 = IDENTITY;
    int i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
        x0 = x0 OP d[i];
        x1 = x1 OP d[i+1];
    }
    /* Finish any remaining elements */
    for (; i < length; i++)
    {
        x0 = x0 OP d[i];
        x1 = x1 OP d[i+1];
        *dest = x0 OP x1;
    }
}
```

- Different form of reassociation

Effect of Separate Accumulators

<table>
<thead>
<tr>
<th>Method</th>
<th>Int (add/mult)</th>
<th>Float (add/mult)</th>
</tr>
</thead>
<tbody>
<tr>
<td>combine4</td>
<td>2.2</td>
<td>10.0</td>
</tr>
<tr>
<td>unroll2</td>
<td>1.5</td>
<td>10.0</td>
</tr>
<tr>
<td>unroll2-ra</td>
<td>1.56</td>
<td>5.0</td>
</tr>
<tr>
<td>unroll2-sa</td>
<td>1.50</td>
<td>5.0</td>
</tr>
<tr>
<td>bound</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- Almost exact 2x speedup (over unroll2) for Int *, FP +, FP *
 - Breaks sequential dependency in a “cleaner,” more obvious way

```c
x0 = x0 OP d[i];
x1 = x1 OP d[i+1];
```
Separate Accumulators

- What changed:
 - Two independent “streams” of operations

- Overall Performance
 - N elements, D cycles latency/op
 - Should be \((N/2+1)\times D\) cycles:
 \[
 \text{cycles per OP} \approx \frac{D}{2}
 \]

What Now?

Unrolling & Accumulating

- Idea
 - Use K accumulators
 - Increase K until best performance reached
 - Need to unroll by L, K divides L

- Limitations
 - Diminishing returns:
 - Cannot go beyond throughput limitations of execution units
 - Large overhead for short lengths: Finish off iterations sequentially
Unrolling & Accumulating: Intel FP *

- Case
 - Pentium 4
 - FP Multiplication
 - Theoretical Limit: 2.00

<table>
<thead>
<tr>
<th>FP *</th>
<th>Unrolling Factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>7.00</td>
</tr>
<tr>
<td>2</td>
<td>3.50</td>
</tr>
<tr>
<td>3</td>
<td>2.34</td>
</tr>
<tr>
<td>4</td>
<td>2.01</td>
</tr>
<tr>
<td>6</td>
<td>2.00</td>
</tr>
<tr>
<td>8</td>
<td>2.01</td>
</tr>
<tr>
<td>10</td>
<td>2.00</td>
</tr>
<tr>
<td>12</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Why 4?

Latency: 7 cycles

1/Throughput: 2 cycles

Those have to be independent

Based on this insight: $K = \#\text{accumulators} = \text{ceil}(\text{latency/cycles per issue})$
Unrolling & Accumulating: Intel FP +

- Case
 - Pentium 4
 - FP Addition
 - Theoretical Limit: 2.00

<table>
<thead>
<tr>
<th>FP +</th>
<th>Unrolling Factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
</tr>
<tr>
<td>10</td>
<td>2.0</td>
</tr>
<tr>
<td>12</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Unrolling & Accumulating: Intel Int *

- Case
 - Pentium 4
 - Integer Multiplication
 - Theoretical Limit: 1.00

<table>
<thead>
<tr>
<th>Int *</th>
<th>Unrolling Factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>10.0</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>3.3</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td>6</td>
<td>1.67</td>
</tr>
<tr>
<td>8</td>
<td>1.25</td>
</tr>
<tr>
<td>10</td>
<td>1.1</td>
</tr>
<tr>
<td>12</td>
<td>1.14</td>
</tr>
</tbody>
</table>
Unrolling & Accumulating: Intel Int +

- Case
 - Pentium 4
 - Integer addition
 - Theoretical Limit: 1.00

<table>
<thead>
<tr>
<th>Int +</th>
<th>Unrolling Factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FP *</th>
<th>Unrolling Factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>7.0</td>
</tr>
<tr>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>2.34</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Pentium 4

Core 2

*FP * is fully pipelined*
Summary (ILP)

- Instruction level parallelism may have to be made explicit in program

- Potential blockers for compilers
 - Reassociation changes result (FP)
 - Too many choices, no good way of deciding

- Unrolling
 - By itself does often nothing (branch prediction works usually well)
 - But may be needed to enable additional transformations (here: reassociation)

- How to program this example?
 - Solution 1: program generator generates alternatives and picks best
 - Solution 2: use model based on latency and throughput