
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

How to Write Fast Numerical Code
Spring 2015
Lecture: Architecture/Microarchitecture and Intel Core

Instructor: Markus Püschel

TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

Technicalities

 Midterm: April 15th (during recitation time)

 Research project:

 Let us know once you have a partner

 If you have a project idea, talk to me (break, after Wed class, email)

 Deadline: March 6th

 Finding partner: fastcode-forum@lists.inf.ethz.ch

 Recipients: TA + all students that have no partner yet

 We will be using Moodle for homeworks (online submission and
more)

2

mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Today

 Architecture/Microarchitecture: What is the difference?

 In detail: Core 2/Core i7

 Crucial microarchitectural parameters

 Peak performance

 Operational intensity

3

Definitions

 Architecture (also instruction set architecture = ISA): The parts of a
processor design that one needs to understand to write assembly
code

 Examples: instruction set specification, registers

 Counterexamples: cache sizes and core frequency

 Example ISAs

 x86

 ia

 MIPS

 POWER

 SPARC

 ARM

4

Some assembly code

ipf:
 xorps %xmm1, %xmm1
 xorl %ecx, %ecx
 jmp .L8
.L10:
 movslq %ecx,%rax
 incl %ecx
 movss (%rsi,%rax,4), %xmm0
 mulss (%rdi,%rax,4), %xmm0
 addss %xmm0, %xmm1
.L8:
 cmpl %edx, %ecx
 jl .L10
 movaps %xmm1, %xmm0
 ret

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

x86-64 / em64t

x86-32

x86-16

MMX

SSE

SSE2

SSE3

SSE4

8086

286

386
486
Pentium
Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo
Penryn
Core i7 (Nehalem)
Sandy Bridge
Haswell

time

Intel x86 Processors

AVX

MMX:
Multimedia extension

SSE:
Streaming SIMD extension

AVX:
Advanced vector extensions

5
AVX2

Backward compatible:
Old binary code (≥ 8086)
runs on new processors.

New code to run on old
processors?
Depends on compiler
flags.

ISA SIMD (Single Instruction Multiple Data)
Vector Extensions

 What is it?
 Extension of the ISA. Data types and instructions for the parallel

computation on short (length 2-8) vectors of integers or floats

 Names: MMX, SSE, SSE2, …, AVX, …

 Why do they exist?
 Useful: Many applications have the necessary fine-grain parallelism

Then: speedup by a factor close to vector length

 Doable: Chip designers have enough transistors to play with

 We will have an extra lecture on vector instructions
 What are the problems?

 How to use them efficiently

6

+ x 4-way

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

time

MMX:
Multimedia extension

SSE:
Streaming SIMD extension

AVX:
Advanced vector extensions

7

4-way single

2-way double

8-way single, 4-way double

x86-64 / em64t

x86-32

x86-16

MMX

SSE

SSE2

SSE3

SSE4

8086

286

386
486
Pentium
Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo
Penryn
Core i7 (Nehalem)
Sandy Bridge
Haswell

Intel x86 Processors

AVX

AVX2

Definitions

 Microarchitecture: Implementation of the architecture

 Examples: caches, cache structure, CPU frequency, details of the
virtual memory system

 Examples

 Intel processors (Wikipedia)

 AMD processors (Wikipedia)

8

http://en.wikipedia.org/wiki/List_of_Intel_microprocessors
http://en.wikipedia.org/wiki/Amd_processors

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Intel’s Tick-Tock Model

 Tick: Shrink of process technology

 Tock: New microarchitecture

 Example: Core and successors
Shown: Intel’s microarchitecture code names (server/mobile may be different)

9

Core Nehalem Sandy Bridge Haswell Skylake
Conroe - Wolfdale Nehalem - Westmere Sandy Bridge – Ivy Bridge Haswell - Broadwell Skylake - Skymore

65 nm 45 nm 32 nm 22 nm 14 nm 10 nm

2007 2010 2012

Tick Tock

2015

Microarchitecture:
The View of the Computer Architect

10

we take the software developer’s view …

Source: Intel Architectures Optimization Reference Manual

http://en.wikipedia.org/wiki/Intel_Tick-Tock
http://en.wikipedia.org/wiki/Intel_Tick-Tock
http://en.wikipedia.org/wiki/Intel_Tick-Tock
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

 Distribute microarchitecture abstraction

11

1 Core

Abstracted Microarchitecture: Example Core 2 (2008) and Core i7 Sandybridge (2011)
Throughput (tp) is measured in doubles/cycle. For example: 2 (4)
Latency (lat) is measured in cycles
1 double floating point (FP) = 8 bytes
Rectangles not to scale

Hard disk
≥ 0.5 TB

fadd

fmul

ALU

load

store

Main
Memory
(RAM)
4 GB

L2 cache
4 MB

16-way
64B CB

L1 Icache

both:
32 KB
8-way
64B CB

L1 Dcache

16 FP
register

internal
registers

instruction
decoder

(up to 5 ops/cycle) instruction pool
(up to 96 (168) “in flight”)

execution
units

double FP:
scalar tp:
• 1 add/cycle
• 1 mult/cycle

vector (SSE) tp
• 1 vadd/cycle = 2 adds/cycle
• 1 vmult/cycle = 2 mults/cycle

CISC ops
RISC
μops

issue
6 μops/

cycle

lat: 3 (4)
tp: 2 (4)

lat: 14 (12)
tp: 1 (4)

lat: 100
tp: 1/4

lat: millions
tp: ~1/250
 (~1/100)

ISA

Core #1

Core #2

Core 2 Duo:
on die

RAM

Memory hierarchy:
• Registers
• L1 cache
• L2 cache
• Main memory
• Hard disk

Core i7 Sandy Bridge:
Core #1

Core #2

Core #3

Core #4

L2

L2

L2

L2

L2

L3

on die

RAM

Core 2 Core i7

256 KB L2 cache
2–8MB L3 cache: lat 26-31, tp 4
RAM: tp 1
vector (AVX) tp
• 1 vadd/cycle = 4 adds/cycle
• 1 vmult/cycle = 4 mults/cycle

out of order execution
superscalar

© Markus Püschel
Computer Science Source: Intel manual (chapter 2)

depends
on platform

CB = cache block

depends
on platform

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Runtime Bounds (Cycles) on Core 2

 Number flops?

 Runtime bound no vector ops:

 Runtime bound vector ops:

 Runtime bound data in L1:

 Runtime bound data in L2:

 Runtime bound data in main memory:

13

/* dot product computation; x, y are vectors of doubles of length n */
double t = 0;
for (i = 0; i < n; i++)
 t = t + x[i]*y[i];

2n

n

n/2

n

2n

8n

Runtime dominated by data movement:
Memory-bound

maximal achievable percentage
of (vector) peak performance

50

25

6.25

Runtime Bounds (Cycles) on Core 2

 Number flops?

 Runtime bound no vector ops:

 Runtime bound vector ops:

 Runtime bound data in L1:

 Runtime bound data in L2:

 Runtime bound data in main memory:

14

/* matrix multiplication; A, B, C are n x n matrices of doubles */
for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 C[i*n+j] += A[i*n+k]*B[k*n+j];

2n3

n3

n3/2

3/2 n2

3n2

12n2

Runtime dominated by data operations (except very small n):
Compute-bound

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Operational Intensity

 Definition: Given a program P, assume cold (empty) cache

15

Operational intensity: I(n) =
W(n)

Q(n)

#flops (input size n)

#bytes transferred cache ↔ memory
(for input size n)

Operational Intensity (Cold Cache)

 Operational intensity:

 Flops: W(n)

 Memory/cache transfers (doubles):

 Reads (bytes): Q(n)

 Operational intensity: I(n)

16

/* dot product computation; x, y are vectors of doubles of length n */
double t = 0;
for (i = 0; i < n; i++)
 t = t + x[i]*y[i];

= 2n

 ≥ 2n (just from the reads)

≥ 16n
= W(n)/Q(n) ≤ 1/8

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Operational Intensity (Cold Cache)

 Operational intensity:

 Flops: W(n)

 Memory/cache transfers (doubles):

 Reads (bytes): Q(n)

 Operational intensity: I(n)

17

= 2n3

 ≥ 3n2 (just from the reads)

≥ 24n2
= W(n)/Q(n) ≤ 1/12 n

/* matrix multiplication; A, B, C are n x n matrices of doubles */
for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 C[i*n+j] += A[i*n+k]*B[k*n+j];

Operational Intensity

 Definition: Given a program P, assume cold (empty) cache

 Examples: Determine asymptotic bounds on I(n)

 Vector sum: y = x + y

 Matrix-vector product: y = Ax

 Fast Fourier transform

 Matrix-matrix product: C = AB + C

 Note: In the last two cases, the tightest possible bound depends on the
cache size m; more later

18

O(1)

O(1)

O(log(n))

O(n)

Operational intensity: I(n) =
W(n)

Q(n)

#flops (input size n)

#bytes transferred cache ↔ memory
(for input size n)

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Compute/Memory Bound

 A function/piece of code is:

 Compute bound if it has high operational intensity

 Memory bound if it has low operational intensity

 A more exact definition depends on the given platform

 More details later: Roofline model

19

Core Processor

2 x Core 2 Duo
packaged

Detailed information about Core processors

Core 2 Duo Core i7

Pictures: Intel

20

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Floating Point Peak Performance?

Two different
processor lines

1 add/cycle

1 or 2 mults/cycle?

21

The Two Floating Points
float ipf (float x[], float y[], int n) {
 int i;
 float result = 0.0;

 for (i = 0; i < n; i++)
 result += x[i]*y[i];
 return result;
}

ipf:
 xorps %xmm1, %xmm1
 xorl %ecx, %ecx
 jmp .L8
.L10:
 movslq %ecx,%rax
 incl %ecx
 movss (%rsi,%rax,4), %xmm0
 mulss (%rdi,%rax,4), %xmm0
 addss %xmm0, %xmm1
.L8:
 cmpl %edx, %ecx
 jl .L10
 movaps %xmm1, %xmm0
 ret

…
cmpl %edx,%eax
 jge .L3
.L5:
 flds (%ebx,%eax,4)
 fmuls (%ecx,%eax,4)
 faddp
 incl %eax
 cmpl %edx,%eax
 jl .L5
.L3:
 movl -4(%ebp),%ebx
 movl %ebp, %esp
 popl %ebp
 ret

standard compilation (SSE) compilation for x87

22

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

The Other Floating Point (x87)

 History

 8086: first computer to implement IEEE FP
(separate 8087 math coprocessor with floating point unit)

 Logically stack based

 486: merged FPU and Integer Unit onto one chip

 Once SSE came out, it was used for floating point

 x87 is default on x86-32 (since SSE is not guaranteed)

 Became obsolete with x86-64

Instruction
decoder and
sequencer

FPU
Integer

Unit

Memory

23

time

MMX:
Multimedia extension

SSE:
Streaming SIMD extension

AVX:
Advanced vector extensions

24

x86-64 / em64t

x86-32

x86-16

MMX

SSE

SSE2

SSE3

SSE4

8086

286

386
486
Pentium
Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo
Penryn
Core i7 (Nehalem)
Sandy Bridge
Haswell

Intel x86 Processors

AVX

AVX2

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

The Other Floating Point (x87)

 History

 8086: first computer to implement IEEE FP
(separate 8087 math coprocessor with floating point unit)

 Logically stack based

 486: merged FPU and Integer Unit onto one chip

 Once SSE came out, it was used for floating point

 x87 is default on x86-32 (since SSE is not guaranteed)

 Became obsolete with x86-64

 Floating Point Formats

 single precision (C float): 32 bits

 double precision (C double): 64 bits

 extended precision (C long double): 80 bits

Instruction
decoder and
sequencer

FPU
Integer

Unit

Memory

25

Core: Floating Point Peak Performance

 Scalar:

 1 add and 1 mult / cycle: 2 flops/cycle

 Assume 3 GHz:
6 Gflop/s scalar peak performance on one core

 Vector double precision (SSE2)

 1 vadd and 1 vmult / cycle (2-way): 4 flops/cycle

 Assume 3 GHz:
12 Gflop/s peak performance on one core

 Vector single precision (SSE)

 1 vadd and 1 vmult / cycle (4-way): 8 flops/cycle

 Assume 3 GHz:
24 Gflop/s peak performance on one core

SSE based FP

x87 FP

26

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Core: Floating Point Peak Performance

 Overall peak on 3 GHz Core 2 and Core i3/i5/i7 Nehalem: (2 cores, SSE)

 Double precision: 24 Gflop/s

 Single precision: 48 Gflop/s

 Overall peak on 3 GHz Core i3/i5/i7 Sandy Bridge: (4 cores, AVX)

 Double precision: 96 Gflop/s

 Single precision: 192 Gflop/s

27

Example: Peak Performance

28

Peak performance
of this computer

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Summary

 Architecture vs. microarchitecture

 To optimize code one needs to understand a suitable abstraction of
the microarchitecture

 Operational intensity:

 High = compute bound = runtime dominated by data operations

 Low = memory bound = runtime dominated by data movement

29

