

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

- Architecture/Microarchitecture: What is the difference?
- In detail: Core 2/Core i7
- Crucial microarchitectural parameters
- Peak performance
- Operational intensity

3


```
/* matrix multiplication; A, B, C are n x n matrices of doubles */
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
        C[i*n+j] += A[i*n+k]*B[k*n+j];</pre>
```

Operational intensity:

- Flops: W(n) = 2n³
- Memory/cache transfers (doubles): ≥ 3n² (just from the reads)
- Reads (bytes): Q(n) ≥ 24n²
- Operational intensity: I(n) = W(n)/Q(n) ≤ 1/12 n

17

MMX: Multimedia extension				
SSE:	Inte	l x86	Processors	
Streaming SIMD extension		x86-16	8086	
AVX:				
Advanced vector extensions			286	
		x86-32	386	
			486	
			Pentium	
		MMX	Pentium MMX	
		SSE	Pentium III	
		SSE2	Pentium 4	time
		SSE3	Pentium 4E	
	x8	86-64 / em64t	Pentium 4F	
			Core 2 Duo	
		SSE4	Penryn	
			Core i7 (Nehalem)	
		AVX	Sandy Bridge	V V
		AVX2	Haswell	
				24

Single-precision (SP) FP MUL	4,1	4,1	Issue port 0; Writeback port 0	SSE based FP
FP MUL (X87)	5, 1	5, 1	Issue port 0; Writeback port 0	x87 FP
FP Shuffle DIV/SQRT	1, 1	1, 1	FP shuffle does not handle QW shuffle.	
 1 add and 1 m Assume 3 GH 6 Gflop/s sca 	nult / cy z: I lar peal	vcle: 2 flo k perform	ps/cycle nance on one core	
 1 add and 1 r Assume 3 GH 6 Gflop/s sca 	nult / cy z: l ar peal	vcle: 2 flo k perform	ps/cycle nance on one core	
 1 add and 1 r Assume 3 GH 6 Gflop/s sca Vector double p 1 yadd and 1 	nult / cy iz: i lar peal precisic	vcle: 2 flo k <i>perform</i> on (SSE2	ps/cycle nance on one core)	
 1 add and 1 r Assume 3 GH 6 Gflop/s sca Vector double p 1 vadd and 1 Assume 2 CH 	nult / cy z: lar peal precisic vmult /	rcle: 2 flo k perform on (SSE2 cycle (2-	ps/cycle nance on one core) way): 4 flops/cycle	
 1 add and 1 r Assume 3 GH 6 Gflop/s sca Vector double p 1 vadd and 1 Assume 3 GH 12 Gflop/s pe 	mult / cy lz: l lar peal precisic vmult / lz: eak perf	vcle: 2 flo k perform on (SSE2 cycle (2-	ps/cycle nance on one core) way): 4 flops/cycle e on one core	

Summary

- Architecture vs. microarchitecture
- To optimize code one needs to understand a suitable abstraction of the microarchitecture
- Operational intensity:
 - High = compute bound = runtime dominated by data operations
 - Low = memory bound = runtime dominated by data movement

29