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Lecture: Architecture/Microarchitecture and Intel Core 

Instructor: Markus Püschel 

TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov 

Technicalities 

 Midterm: April 15th (during recitation time) 

 

 Research project: 

 Let us know once you have a partner 

 If you have a project idea, talk to me (break, after Wed class, email) 

 Deadline: March 6th  

 Finding partner: fastcode-forum@lists.inf.ethz.ch 

 Recipients: TA + all students that have no partner yet 

 

 We will be using Moodle for homeworks (online submission and 
more) 
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Today 

 Architecture/Microarchitecture: What is the difference? 

 In detail: Core 2/Core i7 

 Crucial microarchitectural parameters 

 Peak performance 

 Operational intensity 
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Definitions 

 Architecture (also instruction set architecture = ISA): The parts of a 
processor design that one needs to understand to write assembly 
code 

 Examples: instruction set specification, registers 

 Counterexamples: cache sizes and core frequency 

 Example ISAs 

 x86 

 ia 

 MIPS 

 POWER 

 SPARC 

 ARM 
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Some assembly code 
 
ipf: 
 xorps   %xmm1, %xmm1 
 xorl    %ecx, %ecx 
 jmp     .L8 
.L10: 
 movslq  %ecx,%rax 
 incl    %ecx 
 movss (%rsi,%rax,4), %xmm0 
 mulss (%rdi,%rax,4), %xmm0 
 addss   %xmm0, %xmm1 
.L8: 
 cmpl    %edx, %ecx 
 jl      .L10 
 movaps  %xmm1, %xmm0 
 ret 
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x86-64 / em64t 

x86-32 

x86-16 

MMX 
 

SSE 
 

SSE2 
 

SSE3 

SSE4 

8086 
 
286 

386 
486 
Pentium 
Pentium MMX 

Pentium III 

Pentium 4 

Pentium 4E 

Pentium 4F 
 
Core 2 Duo 
Penryn 
Core i7 (Nehalem) 
Sandy Bridge 
Haswell 

time 

Intel x86 Processors 

AVX 

MMX:  
Multimedia extension 
 
SSE: 
Streaming SIMD extension 
 
AVX: 
Advanced vector extensions 
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AVX2 

Backward compatible: 
Old binary code (≥ 8086) 
runs on new processors. 
 
New code to run on old 
processors? 
Depends on compiler 
flags. 

ISA SIMD (Single Instruction Multiple Data)  
Vector Extensions 

 What is it?  
 Extension of the ISA. Data types and instructions for the parallel 

computation on short (length 2-8) vectors of integers or floats 

 

 

 Names: MMX, SSE, SSE2, …, AVX, … 

 Why do they exist? 
 Useful: Many applications have the necessary fine-grain parallelism 

Then: speedup by a factor close to vector length 

 Doable: Chip designers have enough transistors to play with 

 We will have an extra lecture on vector instructions 
 What are the problems? 

 How to use them efficiently 
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+ x 4-way 
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time 

MMX:  
Multimedia extension 
 
SSE: 
Streaming SIMD extension 
 
AVX: 
Advanced vector extensions 
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4-way single 

2-way double 

8-way single, 4-way double 

x86-64 / em64t 

x86-32 

x86-16 

MMX 
 

SSE 
 

SSE2 
 

SSE3 

SSE4 

8086 
 
286 

386 
486 
Pentium 
Pentium MMX 

Pentium III 

Pentium 4 

Pentium 4E 

Pentium 4F 
 
Core 2 Duo 
Penryn 
Core i7 (Nehalem) 
Sandy Bridge 
Haswell 

Intel x86 Processors 

AVX 

AVX2 

Definitions 

 Microarchitecture: Implementation of the architecture 

 

 Examples: caches, cache structure, CPU frequency, details of the 
virtual memory system 

 

 Examples 

 Intel processors (Wikipedia) 

 AMD processors (Wikipedia) 
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http://en.wikipedia.org/wiki/List_of_Intel_microprocessors
http://en.wikipedia.org/wiki/Amd_processors
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Intel’s Tick-Tock Model 

 Tick: Shrink of process technology 

 Tock: New microarchitecture 

 Example: Core and successors 
Shown: Intel’s microarchitecture code names (server/mobile may be different) 
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Core Nehalem Sandy Bridge Haswell Skylake 
Conroe - Wolfdale Nehalem - Westmere Sandy Bridge – Ivy Bridge Haswell - Broadwell Skylake - Skymore 

65 nm 45 nm 32 nm 22 nm 14 nm 10 nm 

2007 2010 2012 

Tick Tock 

2015 

Microarchitecture:  
The View of the Computer Architect 
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we take the software developer’s view … 

Source: Intel Architectures Optimization Reference Manual 

http://en.wikipedia.org/wiki/Intel_Tick-Tock
http://en.wikipedia.org/wiki/Intel_Tick-Tock
http://en.wikipedia.org/wiki/Intel_Tick-Tock
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
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 Distribute microarchitecture abstraction 
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1 Core 

Abstracted Microarchitecture: Example Core 2 (2008) and Core i7 Sandybridge (2011) 
Throughput (tp) is measured in doubles/cycle. For example: 2 (4) 
Latency (lat) is measured in cycles 
1 double floating point (FP) = 8 bytes 
Rectangles not to scale 

Hard disk 
≥ 0.5 TB 

fadd 

fmul 

ALU 

load 

store 

Main 
Memory 
(RAM) 
4 GB 

L2 cache 
4 MB 

16-way 
64B CB 

L1 Icache 
 

both: 
32 KB 
8-way 
64B CB 

L1 Dcache 

16 FP 
register 

internal 
registers 

instruction 
decoder 

(up to 5 ops/cycle) instruction pool 
(up to 96 (168) “in flight”) 

execution 
units 

double FP: 
scalar tp: 
• 1 add/cycle 
• 1 mult/cycle 

vector (SSE) tp 
• 1 vadd/cycle = 2 adds/cycle 
• 1 vmult/cycle = 2 mults/cycle 

CISC ops 
RISC  
μops 

issue 
6 μops/ 

cycle 

lat: 3 (4) 
tp: 2 (4) 

lat: 14 (12) 
tp: 1 (4) 

lat: 100 
tp: 1/4 

lat: millions 
tp: ~1/250  
     (~1/100) 

ISA 

Core #1 

Core #2 

Core 2 Duo: 
on die 

RAM 

Memory hierarchy: 
• Registers 
• L1 cache 
• L2 cache 
• Main memory 
• Hard disk 

Core i7 Sandy Bridge: 
Core #1 

Core #2 

Core #3 

Core #4 

L2 

L2 

L2 

L2 

L2 

L3 

on die 

RAM 

Core 2 Core i7 

256 KB L2 cache 
2–8MB L3 cache: lat 26-31, tp 4 
RAM: tp 1 
vector (AVX) tp 
• 1 vadd/cycle = 4 adds/cycle 
• 1 vmult/cycle = 4 mults/cycle 

out of order execution 
superscalar 

© Markus Püschel 
Computer Science Source: Intel manual (chapter 2) 

depends  
on platform 

CB = cache block 

depends  
on platform 

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
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Runtime Bounds (Cycles) on Core 2 

 Number flops? 

 Runtime bound no vector ops:  

 Runtime bound vector ops:  

 Runtime bound data in L1:  

 Runtime bound data in L2:  

 Runtime bound data in main memory: 
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/* dot product computation; x, y are vectors of doubles of length n */ 
double t = 0; 
for (i = 0; i < n; i++) 
  t = t + x[i]*y[i]; 

2n 

n 

n/2 

n 

2n 

8n 

Runtime dominated by data movement: 
Memory-bound 

maximal achievable percentage  
of (vector) peak performance 

50 

25 

6.25 

Runtime Bounds (Cycles) on Core 2 

 Number flops? 

 Runtime bound no vector ops:  

 Runtime bound vector ops:  

 Runtime bound data in L1:  

 Runtime bound data in L2:  

 Runtime bound data in main memory:  
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/* matrix multiplication; A, B, C are n x n matrices of doubles */ 
for (i = 0; i < n; i++) 
  for (j = 0; j < n; j++) 
    for (k = 0; k < n; k++) 
      C[i*n+j] += A[i*n+k]*B[k*n+j]; 

2n3 

n3 

n3/2 

3/2 n2 

3n2 

12n2 

Runtime dominated by data operations (except very small n): 
Compute-bound 
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Operational Intensity 

 Definition: Given a program P, assume cold (empty) cache 
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Operational intensity: I(n) =  
W(n) 

Q(n) 

#flops (input size n) 

#bytes transferred cache ↔ memory  
(for input size n) 

Operational Intensity (Cold Cache) 

 Operational intensity: 

 Flops: W(n)  

 Memory/cache transfers (doubles):  

 Reads (bytes): Q(n) 

 Operational intensity: I(n) 
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/* dot product computation; x, y are vectors of doubles of length n */ 
double t = 0; 
for (i = 0; i < n; i++) 
  t = t + x[i]*y[i]; 

= 2n 

 ≥ 2n (just from the reads) 

≥ 16n 
= W(n)/Q(n) ≤ 1/8 
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Operational Intensity (Cold Cache) 

 Operational intensity: 

 Flops: W(n)  

 Memory/cache transfers (doubles):  

 Reads (bytes): Q(n) 

 Operational intensity: I(n) 
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= 2n3 

 ≥ 3n2 (just from the reads) 

≥ 24n2 
= W(n)/Q(n) ≤ 1/12 n 

/* matrix multiplication; A, B, C are n x n matrices of doubles */ 
for (i = 0; i < n; i++) 
  for (j = 0; j < n; j++) 
    for (k = 0; k < n; k++) 
      C[i*n+j] += A[i*n+k]*B[k*n+j]; 

Operational Intensity 

 Definition: Given a program P, assume cold (empty) cache 

 

 

 

 

 Examples: Determine asymptotic bounds on I(n) 

 Vector sum: y = x + y 

 Matrix-vector product: y = Ax 

 Fast Fourier transform 

 Matrix-matrix product: C = AB + C 

 

 Note: In the last two cases, the tightest possible bound depends on the 
cache size m; more later 

18 

O(1) 

O(1) 

O(log(n)) 

O(n) 

Operational intensity: I(n) =  
W(n) 

Q(n) 

#flops (input size n) 

#bytes transferred cache ↔ memory  
(for input size n) 
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Compute/Memory Bound 

 A function/piece of code is: 

 Compute bound if it has high operational intensity 

 Memory bound if it has low operational intensity 

 

 A more exact definition depends on the given platform 

 More details later: Roofline model 
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Core Processor 

2 x Core 2 Duo 
packaged 

Detailed information about Core processors 

Core 2 Duo Core i7 

Pictures: Intel 
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http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
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Floating Point Peak Performance? 

Two different  
processor lines 

1 add/cycle 

1 or 2 mults/cycle? 
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The Two Floating Points 
float ipf (float x[], float y[], int n) { 
  int i; 
  float result = 0.0; 
   
  for (i = 0; i < n; i++) 
    result += x[i]*y[i]; 
  return result; 
} 

ipf: 
 xorps   %xmm1, %xmm1 
 xorl    %ecx, %ecx 
 jmp     .L8 
.L10: 
 movslq  %ecx,%rax 
 incl    %ecx 
 movss (%rsi,%rax,4), %xmm0 
 mulss (%rdi,%rax,4), %xmm0 
 addss   %xmm0, %xmm1 
.L8: 
 cmpl    %edx, %ecx 
 jl      .L10 
 movaps  %xmm1, %xmm0 
 ret 

… 
cmpl %edx,%eax 
   jge .L3 
.L5:  
   flds (%ebx,%eax,4) 
   fmuls (%ecx,%eax,4) 
   faddp 
   incl %eax 
   cmpl %edx,%eax 
   jl .L5  
.L3:  
   movl -4(%ebp),%ebx 
   movl %ebp, %esp 
   popl %ebp 
   ret 

standard compilation (SSE) compilation for x87 

22 
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The Other Floating Point (x87) 

 History 

 8086: first computer to implement IEEE FP 
(separate 8087 math coprocessor with floating point unit) 

 Logically stack based 

 486: merged FPU and Integer Unit onto one chip 

 Once SSE came out, it was used for floating point 

 x87 is default on x86-32 (since SSE is not guaranteed) 

 Became obsolete with x86-64 

Instruction 
decoder and 
sequencer 

FPU 
Integer 

Unit 

Memory 
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time 

MMX:  
Multimedia extension 
 
SSE: 
Streaming SIMD extension 
 
AVX: 
Advanced vector extensions 
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x86-64 / em64t 

x86-32 

x86-16 

MMX 
 

SSE 
 

SSE2 
 

SSE3 

SSE4 

8086 
 
286 

386 
486 
Pentium 
Pentium MMX 

Pentium III 

Pentium 4 

Pentium 4E 

Pentium 4F 
 
Core 2 Duo 
Penryn 
Core i7 (Nehalem) 
Sandy Bridge 
Haswell 

Intel x86 Processors 

AVX 

AVX2 
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The Other Floating Point (x87) 

 History 

 8086: first computer to implement IEEE FP 
(separate 8087 math coprocessor with floating point unit) 

 Logically stack based 

 486: merged FPU and Integer Unit onto one chip 

 Once SSE came out, it was used for floating point 

 x87 is default on x86-32 (since SSE is not guaranteed) 

 Became obsolete with x86-64 

 Floating Point Formats 

 single precision (C float): 32 bits 

 double precision (C double): 64 bits 

 extended precision (C long double): 80 bits 

Instruction 
decoder and 
sequencer 

FPU 
Integer 

Unit 

Memory 

25 

Core: Floating Point Peak Performance 

 Scalar: 

 1 add and 1 mult / cycle: 2 flops/cycle 

 Assume 3 GHz: 
6 Gflop/s scalar peak performance on one core 

 Vector double precision (SSE2) 

 1 vadd and 1 vmult / cycle (2-way): 4 flops/cycle 

 Assume 3 GHz: 
12 Gflop/s peak performance on one core 

 Vector single precision (SSE) 

 1 vadd and 1 vmult / cycle (4-way): 8 flops/cycle 

 Assume 3 GHz: 
24 Gflop/s peak performance on one core 

 

SSE based FP 

x87 FP 
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Core: Floating Point Peak Performance 

 Overall peak on 3 GHz Core 2 and Core i3/i5/i7 Nehalem: (2 cores, SSE) 

 Double precision: 24 Gflop/s 

 Single precision: 48 Gflop/s 

 

 Overall peak on 3 GHz Core i3/i5/i7 Sandy Bridge: (4 cores, AVX) 

 Double precision: 96 Gflop/s 

 Single precision: 192 Gflop/s 
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Example: Peak Performance 
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Peak performance 
of this computer 
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Summary 

 Architecture vs. microarchitecture 

 To optimize code one needs to understand a suitable abstraction of 
the microarchitecture 

 Operational intensity: 

 High = compute bound = runtime dominated by data operations 

 Low = memory bound = runtime dominated by data movement 
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