
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

How to Write Fast Numerical Code
Spring 2015
Lecture: Architecture/Microarchitecture and Intel Core

Instructor: Markus Püschel

TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov

Technicalities

 Midterm: April 15th (during recitation time)

 Research project:

 Let us know once you have a partner

 If you have a project idea, talk to me (break, after Wed class, email)

 Deadline: March 6th

 Finding partner: fastcode-forum@lists.inf.ethz.ch

 Recipients: TA + all students that have no partner yet

 We will be using Moodle for homeworks (online submission and
more)

2

mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Today

 Architecture/Microarchitecture: What is the difference?

 In detail: Core 2/Core i7

 Crucial microarchitectural parameters

 Peak performance

 Operational intensity

3

Definitions

 Architecture (also instruction set architecture = ISA): The parts of a
processor design that one needs to understand to write assembly
code

 Examples: instruction set specification, registers

 Counterexamples: cache sizes and core frequency

 Example ISAs

 x86

 ia

 MIPS

 POWER

 SPARC

 ARM

4

Some assembly code

ipf:
 xorps %xmm1, %xmm1
 xorl %ecx, %ecx
 jmp .L8
.L10:
 movslq %ecx,%rax
 incl %ecx
 movss (%rsi,%rax,4), %xmm0
 mulss (%rdi,%rax,4), %xmm0
 addss %xmm0, %xmm1
.L8:
 cmpl %edx, %ecx
 jl .L10
 movaps %xmm1, %xmm0
 ret

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

x86-64 / em64t

x86-32

x86-16

MMX

SSE

SSE2

SSE3

SSE4

8086

286

386
486
Pentium
Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo
Penryn
Core i7 (Nehalem)
Sandy Bridge
Haswell

time

Intel x86 Processors

AVX

MMX:
Multimedia extension

SSE:
Streaming SIMD extension

AVX:
Advanced vector extensions

5
AVX2

Backward compatible:
Old binary code (≥ 8086)
runs on new processors.

New code to run on old
processors?
Depends on compiler
flags.

ISA SIMD (Single Instruction Multiple Data)
Vector Extensions

 What is it?
 Extension of the ISA. Data types and instructions for the parallel

computation on short (length 2-8) vectors of integers or floats

 Names: MMX, SSE, SSE2, …, AVX, …

 Why do they exist?
 Useful: Many applications have the necessary fine-grain parallelism

Then: speedup by a factor close to vector length

 Doable: Chip designers have enough transistors to play with

 We will have an extra lecture on vector instructions
 What are the problems?

 How to use them efficiently

6

+ x 4-way

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

time

MMX:
Multimedia extension

SSE:
Streaming SIMD extension

AVX:
Advanced vector extensions

7

4-way single

2-way double

8-way single, 4-way double

x86-64 / em64t

x86-32

x86-16

MMX

SSE

SSE2

SSE3

SSE4

8086

286

386
486
Pentium
Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo
Penryn
Core i7 (Nehalem)
Sandy Bridge
Haswell

Intel x86 Processors

AVX

AVX2

Definitions

 Microarchitecture: Implementation of the architecture

 Examples: caches, cache structure, CPU frequency, details of the
virtual memory system

 Examples

 Intel processors (Wikipedia)

 AMD processors (Wikipedia)

8

http://en.wikipedia.org/wiki/List_of_Intel_microprocessors
http://en.wikipedia.org/wiki/Amd_processors

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Intel’s Tick-Tock Model

 Tick: Shrink of process technology

 Tock: New microarchitecture

 Example: Core and successors
Shown: Intel’s microarchitecture code names (server/mobile may be different)

9

Core Nehalem Sandy Bridge Haswell Skylake
Conroe - Wolfdale Nehalem - Westmere Sandy Bridge – Ivy Bridge Haswell - Broadwell Skylake - Skymore

65 nm 45 nm 32 nm 22 nm 14 nm 10 nm

2007 2010 2012

Tick Tock

2015

Microarchitecture:
The View of the Computer Architect

10

we take the software developer’s view …

Source: Intel Architectures Optimization Reference Manual

http://en.wikipedia.org/wiki/Intel_Tick-Tock
http://en.wikipedia.org/wiki/Intel_Tick-Tock
http://en.wikipedia.org/wiki/Intel_Tick-Tock
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

 Distribute microarchitecture abstraction

11

1 Core

Abstracted Microarchitecture: Example Core 2 (2008) and Core i7 Sandybridge (2011)
Throughput (tp) is measured in doubles/cycle. For example: 2 (4)
Latency (lat) is measured in cycles
1 double floating point (FP) = 8 bytes
Rectangles not to scale

Hard disk
≥ 0.5 TB

fadd

fmul

ALU

load

store

Main
Memory
(RAM)
4 GB

L2 cache
4 MB

16-way
64B CB

L1 Icache

both:
32 KB
8-way
64B CB

L1 Dcache

16 FP
register

internal
registers

instruction
decoder

(up to 5 ops/cycle) instruction pool
(up to 96 (168) “in flight”)

execution
units

double FP:
scalar tp:
• 1 add/cycle
• 1 mult/cycle

vector (SSE) tp
• 1 vadd/cycle = 2 adds/cycle
• 1 vmult/cycle = 2 mults/cycle

CISC ops
RISC
μops

issue
6 μops/

cycle

lat: 3 (4)
tp: 2 (4)

lat: 14 (12)
tp: 1 (4)

lat: 100
tp: 1/4

lat: millions
tp: ~1/250
 (~1/100)

ISA

Core #1

Core #2

Core 2 Duo:
on die

RAM

Memory hierarchy:
• Registers
• L1 cache
• L2 cache
• Main memory
• Hard disk

Core i7 Sandy Bridge:
Core #1

Core #2

Core #3

Core #4

L2

L2

L2

L2

L2

L3

on die

RAM

Core 2 Core i7

256 KB L2 cache
2–8MB L3 cache: lat 26-31, tp 4
RAM: tp 1
vector (AVX) tp
• 1 vadd/cycle = 4 adds/cycle
• 1 vmult/cycle = 4 mults/cycle

out of order execution
superscalar

© Markus Püschel
Computer Science Source: Intel manual (chapter 2)

depends
on platform

CB = cache block

depends
on platform

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Runtime Bounds (Cycles) on Core 2

 Number flops?

 Runtime bound no vector ops:

 Runtime bound vector ops:

 Runtime bound data in L1:

 Runtime bound data in L2:

 Runtime bound data in main memory:

13

/* dot product computation; x, y are vectors of doubles of length n */
double t = 0;
for (i = 0; i < n; i++)
 t = t + x[i]*y[i];

2n

n

n/2

n

2n

8n

Runtime dominated by data movement:
Memory-bound

maximal achievable percentage
of (vector) peak performance

50

25

6.25

Runtime Bounds (Cycles) on Core 2

 Number flops?

 Runtime bound no vector ops:

 Runtime bound vector ops:

 Runtime bound data in L1:

 Runtime bound data in L2:

 Runtime bound data in main memory:

14

/* matrix multiplication; A, B, C are n x n matrices of doubles */
for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 C[i*n+j] += A[i*n+k]*B[k*n+j];

2n3

n3

n3/2

3/2 n2

3n2

12n2

Runtime dominated by data operations (except very small n):
Compute-bound

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Operational Intensity

 Definition: Given a program P, assume cold (empty) cache

15

Operational intensity: I(n) =
W(n)

Q(n)

#flops (input size n)

#bytes transferred cache ↔ memory
(for input size n)

Operational Intensity (Cold Cache)

 Operational intensity:

 Flops: W(n)

 Memory/cache transfers (doubles):

 Reads (bytes): Q(n)

 Operational intensity: I(n)

16

/* dot product computation; x, y are vectors of doubles of length n */
double t = 0;
for (i = 0; i < n; i++)
 t = t + x[i]*y[i];

= 2n

 ≥ 2n (just from the reads)

≥ 16n
= W(n)/Q(n) ≤ 1/8

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Operational Intensity (Cold Cache)

 Operational intensity:

 Flops: W(n)

 Memory/cache transfers (doubles):

 Reads (bytes): Q(n)

 Operational intensity: I(n)

17

= 2n3

 ≥ 3n2 (just from the reads)

≥ 24n2
= W(n)/Q(n) ≤ 1/12 n

/* matrix multiplication; A, B, C are n x n matrices of doubles */
for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 C[i*n+j] += A[i*n+k]*B[k*n+j];

Operational Intensity

 Definition: Given a program P, assume cold (empty) cache

 Examples: Determine asymptotic bounds on I(n)

 Vector sum: y = x + y

 Matrix-vector product: y = Ax

 Fast Fourier transform

 Matrix-matrix product: C = AB + C

 Note: In the last two cases, the tightest possible bound depends on the
cache size m; more later

18

O(1)

O(1)

O(log(n))

O(n)

Operational intensity: I(n) =
W(n)

Q(n)

#flops (input size n)

#bytes transferred cache ↔ memory
(for input size n)

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Compute/Memory Bound

 A function/piece of code is:

 Compute bound if it has high operational intensity

 Memory bound if it has low operational intensity

 A more exact definition depends on the given platform

 More details later: Roofline model

19

Core Processor

2 x Core 2 Duo
packaged

Detailed information about Core processors

Core 2 Duo Core i7

Pictures: Intel

20

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Floating Point Peak Performance?

Two different
processor lines

1 add/cycle

1 or 2 mults/cycle?

21

The Two Floating Points
float ipf (float x[], float y[], int n) {
 int i;
 float result = 0.0;

 for (i = 0; i < n; i++)
 result += x[i]*y[i];
 return result;
}

ipf:
 xorps %xmm1, %xmm1
 xorl %ecx, %ecx
 jmp .L8
.L10:
 movslq %ecx,%rax
 incl %ecx
 movss (%rsi,%rax,4), %xmm0
 mulss (%rdi,%rax,4), %xmm0
 addss %xmm0, %xmm1
.L8:
 cmpl %edx, %ecx
 jl .L10
 movaps %xmm1, %xmm0
 ret

…
cmpl %edx,%eax
 jge .L3
.L5:
 flds (%ebx,%eax,4)
 fmuls (%ecx,%eax,4)
 faddp
 incl %eax
 cmpl %edx,%eax
 jl .L5
.L3:
 movl -4(%ebp),%ebx
 movl %ebp, %esp
 popl %ebp
 ret

standard compilation (SSE) compilation for x87

22

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

The Other Floating Point (x87)

 History

 8086: first computer to implement IEEE FP
(separate 8087 math coprocessor with floating point unit)

 Logically stack based

 486: merged FPU and Integer Unit onto one chip

 Once SSE came out, it was used for floating point

 x87 is default on x86-32 (since SSE is not guaranteed)

 Became obsolete with x86-64

Instruction
decoder and
sequencer

FPU
Integer

Unit

Memory

23

time

MMX:
Multimedia extension

SSE:
Streaming SIMD extension

AVX:
Advanced vector extensions

24

x86-64 / em64t

x86-32

x86-16

MMX

SSE

SSE2

SSE3

SSE4

8086

286

386
486
Pentium
Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo
Penryn
Core i7 (Nehalem)
Sandy Bridge
Haswell

Intel x86 Processors

AVX

AVX2

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

The Other Floating Point (x87)

 History

 8086: first computer to implement IEEE FP
(separate 8087 math coprocessor with floating point unit)

 Logically stack based

 486: merged FPU and Integer Unit onto one chip

 Once SSE came out, it was used for floating point

 x87 is default on x86-32 (since SSE is not guaranteed)

 Became obsolete with x86-64

 Floating Point Formats

 single precision (C float): 32 bits

 double precision (C double): 64 bits

 extended precision (C long double): 80 bits

Instruction
decoder and
sequencer

FPU
Integer

Unit

Memory

25

Core: Floating Point Peak Performance

 Scalar:

 1 add and 1 mult / cycle: 2 flops/cycle

 Assume 3 GHz:
6 Gflop/s scalar peak performance on one core

 Vector double precision (SSE2)

 1 vadd and 1 vmult / cycle (2-way): 4 flops/cycle

 Assume 3 GHz:
12 Gflop/s peak performance on one core

 Vector single precision (SSE)

 1 vadd and 1 vmult / cycle (4-way): 8 flops/cycle

 Assume 3 GHz:
24 Gflop/s peak performance on one core

SSE based FP

x87 FP

26

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Core: Floating Point Peak Performance

 Overall peak on 3 GHz Core 2 and Core i3/i5/i7 Nehalem: (2 cores, SSE)

 Double precision: 24 Gflop/s

 Single precision: 48 Gflop/s

 Overall peak on 3 GHz Core i3/i5/i7 Sandy Bridge: (4 cores, AVX)

 Double precision: 96 Gflop/s

 Single precision: 192 Gflop/s

27

Example: Peak Performance

28

Peak performance
of this computer

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2015

Summary

 Architecture vs. microarchitecture

 To optimize code one needs to understand a suitable abstraction of
the microarchitecture

 Operational intensity:

 High = compute bound = runtime dominated by data operations

 Low = memory bound = runtime dominated by data movement

29

