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How to Write Fast Numerical Code 
Spring 2015 
Lecture: Architecture/Microarchitecture and Intel Core 

Instructor: Markus Püschel 

TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov 

Technicalities 

 Midterm: April 15th (during recitation time) 

 

 Research project: 

 Let us know once you have a partner 

 If you have a project idea, talk to me (break, after Wed class, email) 

 Deadline: March 6th  

 Finding partner: fastcode-forum@lists.inf.ethz.ch 

 Recipients: TA + all students that have no partner yet 

 

 We will be using Moodle for homeworks (online submission and 
more) 
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Today 

 Architecture/Microarchitecture: What is the difference? 

 In detail: Core 2/Core i7 

 Crucial microarchitectural parameters 

 Peak performance 

 Operational intensity 
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Definitions 

 Architecture (also instruction set architecture = ISA): The parts of a 
processor design that one needs to understand to write assembly 
code 

 Examples: instruction set specification, registers 

 Counterexamples: cache sizes and core frequency 

 Example ISAs 

 x86 

 ia 

 MIPS 

 POWER 

 SPARC 

 ARM 
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Some assembly code 
 
ipf: 
 xorps   %xmm1, %xmm1 
 xorl    %ecx, %ecx 
 jmp     .L8 
.L10: 
 movslq  %ecx,%rax 
 incl    %ecx 
 movss (%rsi,%rax,4), %xmm0 
 mulss (%rdi,%rax,4), %xmm0 
 addss   %xmm0, %xmm1 
.L8: 
 cmpl    %edx, %ecx 
 jl      .L10 
 movaps  %xmm1, %xmm0 
 ret 
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x86-64 / em64t 

x86-32 

x86-16 

MMX 
 

SSE 
 

SSE2 
 

SSE3 

SSE4 

8086 
 
286 

386 
486 
Pentium 
Pentium MMX 

Pentium III 

Pentium 4 

Pentium 4E 

Pentium 4F 
 
Core 2 Duo 
Penryn 
Core i7 (Nehalem) 
Sandy Bridge 
Haswell 

time 

Intel x86 Processors 

AVX 

MMX:  
Multimedia extension 
 
SSE: 
Streaming SIMD extension 
 
AVX: 
Advanced vector extensions 
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AVX2 

Backward compatible: 
Old binary code (≥ 8086) 
runs on new processors. 
 
New code to run on old 
processors? 
Depends on compiler 
flags. 

ISA SIMD (Single Instruction Multiple Data)  
Vector Extensions 

 What is it?  
 Extension of the ISA. Data types and instructions for the parallel 

computation on short (length 2-8) vectors of integers or floats 

 

 

 Names: MMX, SSE, SSE2, …, AVX, … 

 Why do they exist? 
 Useful: Many applications have the necessary fine-grain parallelism 

Then: speedup by a factor close to vector length 

 Doable: Chip designers have enough transistors to play with 

 We will have an extra lecture on vector instructions 
 What are the problems? 

 How to use them efficiently 

6 

+ x 4-way 



© Markus Püschel 
Computer Science 

How to write fast numerical code 

Spring 2015 

time 

MMX:  
Multimedia extension 
 
SSE: 
Streaming SIMD extension 
 
AVX: 
Advanced vector extensions 
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4-way single 

2-way double 

8-way single, 4-way double 

x86-64 / em64t 

x86-32 

x86-16 

MMX 
 

SSE 
 

SSE2 
 

SSE3 

SSE4 

8086 
 
286 

386 
486 
Pentium 
Pentium MMX 

Pentium III 

Pentium 4 

Pentium 4E 

Pentium 4F 
 
Core 2 Duo 
Penryn 
Core i7 (Nehalem) 
Sandy Bridge 
Haswell 

Intel x86 Processors 

AVX 

AVX2 

Definitions 

 Microarchitecture: Implementation of the architecture 

 

 Examples: caches, cache structure, CPU frequency, details of the 
virtual memory system 

 

 Examples 

 Intel processors (Wikipedia) 

 AMD processors (Wikipedia) 
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http://en.wikipedia.org/wiki/List_of_Intel_microprocessors
http://en.wikipedia.org/wiki/Amd_processors
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Intel’s Tick-Tock Model 

 Tick: Shrink of process technology 

 Tock: New microarchitecture 

 Example: Core and successors 
Shown: Intel’s microarchitecture code names (server/mobile may be different) 
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Core Nehalem Sandy Bridge Haswell Skylake 
Conroe - Wolfdale Nehalem - Westmere Sandy Bridge – Ivy Bridge Haswell - Broadwell Skylake - Skymore 

65 nm 45 nm 32 nm 22 nm 14 nm 10 nm 

2007 2010 2012 

Tick Tock 

2015 

Microarchitecture:  
The View of the Computer Architect 
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we take the software developer’s view … 

Source: Intel Architectures Optimization Reference Manual 

http://en.wikipedia.org/wiki/Intel_Tick-Tock
http://en.wikipedia.org/wiki/Intel_Tick-Tock
http://en.wikipedia.org/wiki/Intel_Tick-Tock
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
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 Distribute microarchitecture abstraction 
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1 Core 

Abstracted Microarchitecture: Example Core 2 (2008) and Core i7 Sandybridge (2011) 
Throughput (tp) is measured in doubles/cycle. For example: 2 (4) 
Latency (lat) is measured in cycles 
1 double floating point (FP) = 8 bytes 
Rectangles not to scale 

Hard disk 
≥ 0.5 TB 

fadd 

fmul 

ALU 

load 

store 

Main 
Memory 
(RAM) 
4 GB 

L2 cache 
4 MB 

16-way 
64B CB 

L1 Icache 
 

both: 
32 KB 
8-way 
64B CB 

L1 Dcache 

16 FP 
register 

internal 
registers 

instruction 
decoder 

(up to 5 ops/cycle) instruction pool 
(up to 96 (168) “in flight”) 

execution 
units 

double FP: 
scalar tp: 
• 1 add/cycle 
• 1 mult/cycle 

vector (SSE) tp 
• 1 vadd/cycle = 2 adds/cycle 
• 1 vmult/cycle = 2 mults/cycle 

CISC ops 
RISC  
μops 

issue 
6 μops/ 

cycle 

lat: 3 (4) 
tp: 2 (4) 

lat: 14 (12) 
tp: 1 (4) 

lat: 100 
tp: 1/4 

lat: millions 
tp: ~1/250  
     (~1/100) 

ISA 

Core #1 

Core #2 

Core 2 Duo: 
on die 

RAM 

Memory hierarchy: 
• Registers 
• L1 cache 
• L2 cache 
• Main memory 
• Hard disk 

Core i7 Sandy Bridge: 
Core #1 

Core #2 

Core #3 

Core #4 

L2 

L2 

L2 

L2 

L2 

L3 

on die 

RAM 

Core 2 Core i7 

256 KB L2 cache 
2–8MB L3 cache: lat 26-31, tp 4 
RAM: tp 1 
vector (AVX) tp 
• 1 vadd/cycle = 4 adds/cycle 
• 1 vmult/cycle = 4 mults/cycle 

out of order execution 
superscalar 

© Markus Püschel 
Computer Science Source: Intel manual (chapter 2) 

depends  
on platform 

CB = cache block 

depends  
on platform 

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
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Runtime Bounds (Cycles) on Core 2 

 Number flops? 

 Runtime bound no vector ops:  

 Runtime bound vector ops:  

 Runtime bound data in L1:  

 Runtime bound data in L2:  

 Runtime bound data in main memory: 
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/* dot product computation; x, y are vectors of doubles of length n */ 
double t = 0; 
for (i = 0; i < n; i++) 
  t = t + x[i]*y[i]; 

2n 

n 

n/2 

n 

2n 

8n 

Runtime dominated by data movement: 
Memory-bound 

maximal achievable percentage  
of (vector) peak performance 

50 

25 

6.25 

Runtime Bounds (Cycles) on Core 2 

 Number flops? 

 Runtime bound no vector ops:  

 Runtime bound vector ops:  

 Runtime bound data in L1:  

 Runtime bound data in L2:  

 Runtime bound data in main memory:  
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/* matrix multiplication; A, B, C are n x n matrices of doubles */ 
for (i = 0; i < n; i++) 
  for (j = 0; j < n; j++) 
    for (k = 0; k < n; k++) 
      C[i*n+j] += A[i*n+k]*B[k*n+j]; 

2n3 

n3 

n3/2 

3/2 n2 

3n2 

12n2 

Runtime dominated by data operations (except very small n): 
Compute-bound 
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Operational Intensity 

 Definition: Given a program P, assume cold (empty) cache 
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Operational intensity: I(n) =  
W(n) 

Q(n) 

#flops (input size n) 

#bytes transferred cache ↔ memory  
(for input size n) 

Operational Intensity (Cold Cache) 

 Operational intensity: 

 Flops: W(n)  

 Memory/cache transfers (doubles):  

 Reads (bytes): Q(n) 

 Operational intensity: I(n) 

16 

/* dot product computation; x, y are vectors of doubles of length n */ 
double t = 0; 
for (i = 0; i < n; i++) 
  t = t + x[i]*y[i]; 

= 2n 

 ≥ 2n (just from the reads) 

≥ 16n 
= W(n)/Q(n) ≤ 1/8 
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Operational Intensity (Cold Cache) 

 Operational intensity: 

 Flops: W(n)  

 Memory/cache transfers (doubles):  

 Reads (bytes): Q(n) 

 Operational intensity: I(n) 
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= 2n3 

 ≥ 3n2 (just from the reads) 

≥ 24n2 
= W(n)/Q(n) ≤ 1/12 n 

/* matrix multiplication; A, B, C are n x n matrices of doubles */ 
for (i = 0; i < n; i++) 
  for (j = 0; j < n; j++) 
    for (k = 0; k < n; k++) 
      C[i*n+j] += A[i*n+k]*B[k*n+j]; 

Operational Intensity 

 Definition: Given a program P, assume cold (empty) cache 

 

 

 

 

 Examples: Determine asymptotic bounds on I(n) 

 Vector sum: y = x + y 

 Matrix-vector product: y = Ax 

 Fast Fourier transform 

 Matrix-matrix product: C = AB + C 

 

 Note: In the last two cases, the tightest possible bound depends on the 
cache size m; more later 
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O(1) 

O(1) 

O(log(n)) 

O(n) 

Operational intensity: I(n) =  
W(n) 

Q(n) 

#flops (input size n) 

#bytes transferred cache ↔ memory  
(for input size n) 
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Compute/Memory Bound 

 A function/piece of code is: 

 Compute bound if it has high operational intensity 

 Memory bound if it has low operational intensity 

 

 A more exact definition depends on the given platform 

 More details later: Roofline model 
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Core Processor 

2 x Core 2 Duo 
packaged 

Detailed information about Core processors 

Core 2 Duo Core i7 

Pictures: Intel 
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http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
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Floating Point Peak Performance? 

Two different  
processor lines 

1 add/cycle 

1 or 2 mults/cycle? 

21 

The Two Floating Points 
float ipf (float x[], float y[], int n) { 
  int i; 
  float result = 0.0; 
   
  for (i = 0; i < n; i++) 
    result += x[i]*y[i]; 
  return result; 
} 

ipf: 
 xorps   %xmm1, %xmm1 
 xorl    %ecx, %ecx 
 jmp     .L8 
.L10: 
 movslq  %ecx,%rax 
 incl    %ecx 
 movss (%rsi,%rax,4), %xmm0 
 mulss (%rdi,%rax,4), %xmm0 
 addss   %xmm0, %xmm1 
.L8: 
 cmpl    %edx, %ecx 
 jl      .L10 
 movaps  %xmm1, %xmm0 
 ret 

… 
cmpl %edx,%eax 
   jge .L3 
.L5:  
   flds (%ebx,%eax,4) 
   fmuls (%ecx,%eax,4) 
   faddp 
   incl %eax 
   cmpl %edx,%eax 
   jl .L5  
.L3:  
   movl -4(%ebp),%ebx 
   movl %ebp, %esp 
   popl %ebp 
   ret 

standard compilation (SSE) compilation for x87 

22 
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The Other Floating Point (x87) 

 History 

 8086: first computer to implement IEEE FP 
(separate 8087 math coprocessor with floating point unit) 

 Logically stack based 

 486: merged FPU and Integer Unit onto one chip 

 Once SSE came out, it was used for floating point 

 x87 is default on x86-32 (since SSE is not guaranteed) 

 Became obsolete with x86-64 

Instruction 
decoder and 
sequencer 

FPU 
Integer 

Unit 

Memory 

23 

time 

MMX:  
Multimedia extension 
 
SSE: 
Streaming SIMD extension 
 
AVX: 
Advanced vector extensions 
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x86-64 / em64t 

x86-32 

x86-16 

MMX 
 

SSE 
 

SSE2 
 

SSE3 

SSE4 

8086 
 
286 

386 
486 
Pentium 
Pentium MMX 

Pentium III 

Pentium 4 

Pentium 4E 

Pentium 4F 
 
Core 2 Duo 
Penryn 
Core i7 (Nehalem) 
Sandy Bridge 
Haswell 

Intel x86 Processors 

AVX 

AVX2 
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The Other Floating Point (x87) 

 History 

 8086: first computer to implement IEEE FP 
(separate 8087 math coprocessor with floating point unit) 

 Logically stack based 

 486: merged FPU and Integer Unit onto one chip 

 Once SSE came out, it was used for floating point 

 x87 is default on x86-32 (since SSE is not guaranteed) 

 Became obsolete with x86-64 

 Floating Point Formats 

 single precision (C float): 32 bits 

 double precision (C double): 64 bits 

 extended precision (C long double): 80 bits 

Instruction 
decoder and 
sequencer 

FPU 
Integer 

Unit 

Memory 
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Core: Floating Point Peak Performance 

 Scalar: 

 1 add and 1 mult / cycle: 2 flops/cycle 

 Assume 3 GHz: 
6 Gflop/s scalar peak performance on one core 

 Vector double precision (SSE2) 

 1 vadd and 1 vmult / cycle (2-way): 4 flops/cycle 

 Assume 3 GHz: 
12 Gflop/s peak performance on one core 

 Vector single precision (SSE) 

 1 vadd and 1 vmult / cycle (4-way): 8 flops/cycle 

 Assume 3 GHz: 
24 Gflop/s peak performance on one core 

 

SSE based FP 

x87 FP 
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Core: Floating Point Peak Performance 

 Overall peak on 3 GHz Core 2 and Core i3/i5/i7 Nehalem: (2 cores, SSE) 

 Double precision: 24 Gflop/s 

 Single precision: 48 Gflop/s 

 

 Overall peak on 3 GHz Core i3/i5/i7 Sandy Bridge: (4 cores, AVX) 

 Double precision: 96 Gflop/s 

 Single precision: 192 Gflop/s 
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Example: Peak Performance 
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Peak performance 
of this computer 
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Summary 

 Architecture vs. microarchitecture 

 To optimize code one needs to understand a suitable abstraction of 
the microarchitecture 

 Operational intensity: 

 High = compute bound = runtime dominated by data operations 

 Low = memory bound = runtime dominated by data movement 

29 


