How to Write Fast Numerical Code
Spring 2015

Lecture: Cost analysis and performance

Instructor: Markus Püschel
TA: Gagandeep Singh, Daniele Spampinato & Alen Stojanov

Technicalities

- Research project: Let us know (fastcode@lists.inf.ethz.ch)
 - if you know with whom you will work
 - if you have already a project idea
 - current status: on the web
 - Deadline: March 6th
- If you need partner: fastcode-forum@lists.inf.ethz.ch
- If you need partner and project: fastcode-forum@lists.inf.ethz.ch
Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Performance [Gflop/s]

- Multiple threads: 4x
- Vector instructions: 4x
- Memory hierarchy: 20x

- Compiler doesn’t do the job
- Doing by hand: *nightmare*

Performance is different than other software quality features
Today

- Problem and Algorithm
- Asymptotic analysis
- Cost analysis

Problem

- **Problem:** Specification of the relationship between a given input and a desired output
- **Numerical problem** *(this course):* In- and output are numbers (or lists, vectors, arrays, ... of numbers)
- **Examples**
 - Compute the discrete Fourier transform of a given vector \(x \) of length \(n \)
 - Matrix-matrix multiplication (MMM)
 - Compress an \(n \times n \) image with a ratio ...
 - Sort a given list of integers
 - Multiply by 5, \(y = 5x \), using only additions and shifts
Algorithm

- **Algorithm**: A precise description of a sequence of steps to solve a given problem
- **Numerical algorithm**: Dominated by arithmetic (adds, mults, ...)
- **Examples**:
 - Cooley-Tukey fast Fourier transform (FFT)
 - A description of MMM by definition
 - JPEG encoding
 - Mergesort
 - \(y = x \ll 2 + x \)

Reminder: Do You Know The O?

- \(O(f(n)) \) is a ... ? **set**
- How are these related? \(O(f(n)) = \Omega(f(n)) \cap O(f(n)) \)
 - \(O(f(n)) \)
 - \(\Theta(f(n)) \)
 - \(\Omega(f(n)) \)
- \(O(2^n) = O(3^n) \)? **no**
- \(O(\log_2(n)) = O(\log_3(n)) \) **yes**
- \(O(n^2 + m) = O(n^2) \)? **no**
Always Use Canonical Expressions

Example:
- *not* \(O(2n + \log(n)) \), *but* \(O(n) \)

Canonical? If not replace:
- \(O(100) \)
- \(O(\log_2(n)) \)
- \(\Theta(n^{1.1} + \log(n)) \)
- \(2n + O(\log(n)) \)
- \(O(2n + \log(n)) \)
- \(\Omega(n \log(m) + m \log(n)) \)

Asymptotic Analysis of Algorithms & Problems

Analysis of algorithms for
- Runtime
- Space = memory requirement = memory footprint
- Data movement (e.g., between cache and memory)

Asymptotic runtime of an algorithm:
- Count “elementary” steps
 - *numerical algorithms*: usually floating point operations
- State result in \(O \)-notation
- Example MMM (square and rectangular): \(C = A^*B + C \)

Runtime complexity of a problem =
Minimum of the runtimes of all possible algorithms
- Result also stated in asymptotic \(O \)-notation

Complexity is a property of a problem, not of an algorithm
Valid?

- Is asymptotic analysis still valid given this?

All algorithms are $O(n^3)$ when counting flops.

What happens to asymptotics if I take memory accesses into account?
No problem: $O(f(n))$ flops means at most $O(f(n))$ memory accesses

What happens if I take vectorization/parallelization into account?
More parameters needed: E.g., $O(n^3/p)$ on p processors

Asymptotic Analysis: Limitations

- $\Theta(f(n))$ describes only the *eventual trend* of the runtime

- Constants matter
 - Not clear when “eventual” starts
 - n^2 is likely better than $1000n^2$
 - $10000000000n$ is likely worse than n^2
Cost Analysis for Numerical Problems

- **Goal:** determine exact “cost” of an algorithm
- **Cost:** number of relevant operations
- **Formally:** define *cost measure* \(C(n) \). Examples:
 - Counting adds and mults separately: \(C(n) = (\text{adds}(n), \text{mults}(n)) \)
 - Counting adds, mults, divs separately: \(C(n) = (\text{adds}(n), \text{mults}(n), \text{divs}(n)) \)
 - Counting all flops together: \(C(n) = \text{flops}(n) \)
- **This course:** focusing on floating point operations

Example

```c
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
            for (k = 0; k < n; k++)
                c[i*n+j] += a[i*n + k]*b[k*n + j];
}
```

- Asymptotic runtime?
 - \(O(n^3) \)
- Cost measure?
 - \(C(n) = (\text{fladds}(n), \text{flmults}(n)) = (n^3, n^3) \)
 - \(C(n) = \text{flops}(n) = 2n^3 \)
Cost Analysis: How To Do

- Define suitable cost measure
- Count in algorithm or code
 - Recursive function: solve recurrence
- Instrument code
- Use performance counters (maybe in a later lecture)
 - Intel PCM
 - Intel Vtune
 - Perfmon (open source)
 - Counters for floating points are recently less and less available

Remember: Even Exact Cost ≠ Runtime

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]

\[2n^3 \text{ flops} \]
Why Cost Analysis?

- Enables performance analysis:

\[
\text{performance} = \frac{\text{cost}}{\text{runtime}} \quad \text{[flops/cycle] or [flops/sec]}
\]

- Upper bound through machine’s peak performance

Example

/* Matrix-vector multiplication y = Ax + y */

```c
void mmm(double *A, double *x, double *y, int n) {
    int i, j, k;
    for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
            y[i] += A[i*n + j]*x[j];
}
```

- Flops? For \(n = 10 \)
 - \(2n^2 = 200 \)

- Performance for \(n = 10 \) if runs in 400 cycles
 - 0.5 flops/cycle

- Assume peak performance: 2 flops/cycle percentage peak?
 - 25%
Summary

- Asymptotic runtime gives only an idea of the runtime trend.
- Exact number of operations (cost):
 - Also no good indicator of runtime
 - But enables performance analysis
- Always measure performance (if possible)
 - Gives idea of efficiency
 - Gives percentage of peak