

Today

- Motivation for this course
- Organization of this course

Model predictive control	Singular-value decomposition
Eigenvalues	Mean shift algorithm for segmentation
LU factorization	Stencil computations
Optimal binary search organization	Displacement based algorithms
Image color conversions	Motion estimation
Image geometry transformations	Multiresolution classifier
Enclosing ball of points	Kalman filter
Metropolis algorithm, Monte Carlo	Object detection
Seam carving	IIR filters
SURF feature detection	Arithmetic for large numbers
Submodular function optimization	Optimal binary search organization
Graph cuts, Edmond-Karps Algorithm	Software defined radio
Gaussian filter	Shortest path problem
Black Scholes option pricing	Feature set for biomedical imaging
Disparity map refinement	Biometrics identification 17

It is very difficult to write the fastest code

- Tuning for memory hierarchy
- Vector instructions
- Efficient parallelization (multiple threads)
- Requires expert knowledge in algorithms, coding, and architecture

Fast code can be large

Can violate "good" software engineering practices

Compilers often can't do the job

- Often intricate changes in the algorithm required
- Parallelization/vectorization still unsolved

Highest performance is in general non-portable

About this Course (cont'd)

Requirements

- solid C programming skills
- matrix algebra
- Master student or above

Grading

- 40% research project
- 25% midterm exam
- 35% homework

Wednesday slot

- Gives you scheduled time to work together
- Occasionally I will move lecture there
- By default will not take place

Research Project: Overview Teams of 4 Yes: 4 Topic: Very fast implementation of a numerical problem Until March 6th: find a project team suggest to me a problem or I give you a problem Tip: pick something from your research or that you are interested in Register on project website + you get svn access Show "milestones" during semester **One-on-one meetings** Give short presentation end of semester Write 6 page standard conference paper (template will be provided) 36

Submit final code (early semester break)

- See course website
- Prior versions of this course: see website
- I post all slides, notes, etc. on the course website

