
ETH login ID:

(Please print in capital letters)

Full name:

263-2300: How to Write Fast Numerical Code
ETH Computer Science, Spring 2015
Midterm Exam
Wednesday, April 15, 2015

Instructions

• Make sure that your exam is not missing any sheets, then write your full name and
login ID on the front.

• No extra sheets are allowed.

• The exam has a maximum score of 100 points.

• No books, notes, calculators, laptops, cell phones, or other electronic devices are
allowed.

Problem 1 (16 = 1+1+5+4+5)

Problem 2 (18 = 3+15)

Problem 3 (18 = 2+6+10)

Problem 4 (12 = 2 + 2 + 2 + 2 + 2 + 2)

Problem 5 (12)

Problem 6 (12 = 6 + 6)

Problem 7 (12 = 2 + 5 + 5)

Total (100)

1 of 13

Problem 1 (16 = 1 + 1 + 5 + 4 + 5)

We consider a 128 byte data cache that is 2-way associative and can hold 4 doubles in
every cache line. A double is assumed to require 8 bytes.

For the below C code we assume a cold cache. Further, we consider an array A of 32
doubles that is cache aligned (that is, A[0] is loaded into the first slot of a cache line in the
first set). All other variables are held in registers. The code is parameterized by positive
integers m and n that satisfy m * n = 32 (i.e., if you know one you know the other).

1 int i, j;
2 double A[32], t = 0;
3 for(i = 0; i < m; i++)
4 for(j = 0; j < n; j++)
5 t += A[j * m + i];

Answer the following:

1. How many doubles can the cache hold? 16

2. How many sets does the cache have? 2

3. For m = 1:

(a) Determine the miss rate. 1
4

(b) What kind of misses occur? Compulsory.

(c) What kind of locality does the code have with respect to accesses of A and this
cache? Spatial locality.

4. For m = 2:

(a) Determine the miss rate. 1
2

(b) What kind of misses occur? Compulsory & conflict.

5. For m = 16:

(a) Determine the miss rate. 1
4

(b) What kind of misses occur? Compulsory.

(c) What kind of locality does the code have with respect to accesses of A and this
cache? Spatial locality.

2 of 13

Problem 2 (18 = 3 + 15 points)

Consider the following code, which computes the Cholesky decomposition of a hermitian
positive definite matrix A (N ×N).

1 void cholesky(float **A, float **L, int N){
2 int i,j,k;
3 float temp;
4
5 for(j = 0; j < N; j++){
6 temp = A[j][j];
7 for(k = 0; k < j; k++){
8 temp = temp - L[j][k]*L[j][k];
9 }
10 L[j][j] = sqrt(temp);
11 for(i = j+1; i < N; i++){
12 temp = A[i][j];
13 for(k = 0; k < j; k++){
14 temp = temp - L[i][k]*L[j][k];
15 }
16 L[i][j] = temp/L[j][j];
17 }
18 }
19 }

1. Define a detailed floating point cost measure C(N) for the function cholesky.
Ignore integer operations.

Solution:

C(N) = {add(N),mul(N), div(N), sqrt(N)}

2. Compute the cost C(N) as just defined.

Solution:

add(N) =
N3

6
+O(N2)

mul(N) =
N3

6
+O(N2)

div(N) =
N2

2
+O(N)

sqrt(N) = N

Notes: Lower-order terms (and only those) may be expressed using big-O notation.
This means: as the final result something like 3n+O(log(n)) would be ok but O(n) is not.

The following formulas may be helpful:

3 of 13

•
∑n−1

i=0 i = n(n−1)
2

= n2

2
+O(n)

•
∑n−1

i=0 i
2 = (n−1)n(2n−1)

6
= n3

3
+O(n2)

4 of 13

Problem 3 (18 = 2 + 6 + 10 points)

Assume you are using a system with the following features:

• A CPU that can issue 2 single precision multiplications and 2 single precision
additions/subtractions per cycle.

• The interconnection between CPU and main memory (size 16 GB) has a maximal
bandwidth of 8 bytes/cycle.

• The last level cache is write-allocate/write-back, direct mapped, has size 8 MB and
block size of 64 bytes.

Answer the following two questions:

1. Draw the roofline plot for this system:

2-5 2-4 2-3 2-2 2-1 20 21 22 23 24 25 26 27

Operational intensity [flops/byte]

2-5

2-4

2-3

2-2

2-1

20

21

22

23

24

25

26

27

Pe
rfo

rm
an

ce
 [f

lo
ps

/c
yc

le
]

5 of 13

2. Consider the following code where all the entries in matrix m are initialized between
0 and 1:

1 void compute(float m[64]) {
2 int i;
3
4 for(i = 1; i < 64; i++) {
5 m[i-1] = (1 - m[i-1]) * m[i];
6 m[i] = (1 - m[i]) * m[i-1];
7 }
8 }

Assume a cold cache, that the operators are left associative (expressions are
evaluated from left to right), and that a float takes 4 bytes. Now compute,

(a) The operational intensity of this code (ignore write-backs).

Solution:

There are 63 iterations, each iteration performs 4 flops, so W (N) = 4 ∗ 63 = 252
flops. All entries in matrix are read once so Q(N) = 64 ∗ 4 = 256 bytes are
loaded into cache. This gives

I(N) = 252/256 ≈ 1f/b

(b) An upper bound (as tight as possible) for performance on the specified system.

You are allowed to make minor approximations. Show your work.

Solution:

Since I(N) > 1
2
, the code is compute bound. However it is not possible to achieve

peak performance of 4 f/c due to dependencies in the computation. For i-th iteration,
the assignment to m[i− 1] at line 5 depends (except when i = 1) on m[i− 1] which
was computed at line 6 in (i− 1)-th iteration. Similarly, assignment to m[i] at line 6
depends on m[i− 1] computed previously at line 5. Because of these dependencies,
(i+ 1)-th iteration cannot be interleaved with i-th iteration. For i-th iteration, two
substitutions can be issued in parallel. The multiplication at line 5 can only be issued
after substitution at line 5 is complete. Similarly, multiplication at line 6 can only be
issued after previous multiplication at line 5 is completed. The number of cycles
required for this can be either 3 or 1.5 depending on the processor. We accept both
solutions, thus the upper bound for performance is 4

3
(4
1.5

) f/c.

6 of 13

3. Consider the following code where alpha is initialized between 0 and 1:

1 void compute(float A[4096][4096], float alpha) {
2 int i,j;
3
4 for(i = 0; i < 4096; i++)
5 for(j=0; j < 4096; j++)
6 A[i][j] = alpha*A[i][i] + (1 - alpha)*A[j][j];
7 }

Assume a cold cache, that the operators are left associative (expressions are
evaluated from left to right), and that a float takes 4 bytes. Now compute,

(a) The operational intensity of this code (ignore write-backs).

Solution:

The size of the matrix is 212 × 212 × 4 = 226 = 64MB. Since the size of cache is
8MB only, it can accommodate only 1

8
-th of the matrix. The diagonal operands

A[j][j] (A[i][i]) are accessed in stride of 4097. Since the cache is direct mapped,
≈ 217

28
= 512 blocks are used for A[j][j] (A[i][i]). This results in cache miss for

each access to A[j][j]. Access to A[i][i] will be cache miss after ≈ 512 iterations
of j-loop. Note that A[j][j] (A[i][i]) can also be replaced by A[i][j] (vice versa).
For simplicity, we ignore misses for A[i][j], A[i][i], thus at least 64 bytes needs to
be loaded at every iteration for performing 4 flops. Thus,

I(N) ≈ 4

64
=

1

16
f/b

(b) An upper bound (as tight as possible) for performance on the specified system.

You are allowed to make minor approximations. Show your work.

Solution:

Since I(N) < 1
2
, the computation is memory bound and the peak performance has

upper bound of 1
16
× β = 1

16
× 8 = 1

2
f/c.

7 of 13

Problem 4 (12 = 2 + 2 + 2 + 2 + 2 + 2)

Mark the following statements as true (T) or false (F). Explanations are not needed.
Wrong answers give negative points but you cannot get less than 0 points for this problem.
You can leave questions unanswered.

� Assume a program runs N many floating point adds and N many floating point mults
and that the gaps for the two instructions are respectively g1 and g2 cycles/issue.
Then assuming a warm cache scenario where the data set fits in cache and that
accesses to the cache have a negligible cost the achievable peak performance can
always be estimated as π = 1

g1
+ 1

g2
flops/cycle.

� A direct mapped cache with parameters
(number of sets, associativity, block size) = (S, 1, B) always produces twice as many
conflict misses as a 2-way set associative cache with parameters (S/2, 2, B).

� Data prefetching can increase operational intensity.

� Every TLB miss will also cause a cache miss.

� Every cache miss will also cause a TLB miss.

� If two algorithms solve the same problem in the same time, they have the same
performance.

Solution: All statements are false.

8 of 13

Problem 5 (12)

Associative caches were designed to reduce conflict misses. However, increasing
associativity (while maintaining the cache size) does not guarantee to achieve this in all
cases. Consider a cache C1 with (number of sets, associativity, block size) = (S, 1, 8), i.e.,
the block size is one double. A second cache C2 has the same size with parameters
(S/2, 2, 8). Both have LRU replacement and are empty.

Consider an array a of 2S doubles that is cache-aligned (i.e., a[0] is mapped to the
first block of either cache). Provide an access sequence (of a length that you can choose) to
this array such that on C1 fewer misses occur than on C2.

Hint: It helps to draw the caches.

Solution: Two possible sequences are 0; S
2
; 3S

2
; 0 and 0; S

2
;S; 0; S

2
.

9 of 13

Problem 6 (12 = 6 + 6)

In this problem we consider a computer with a fully associative cache of size γ (measured
in doubles; one double is 8 bytes) and three algorithms for which the flop count W and
lower bounds for the minimal memory traffic Q (in doubles) are known:

MMM: Matrix multiplication of N ×N matrices with W (N) = 2N3, Q(N) ≥ N3

2
√
2γ

doubles.

FFT: A variant of an N -point fast Fourier transform (N a power of 2) with
W (N) = 2N log2N , Q(N) ≥ 2N log2N

log2 γ
doubles.

CG: A conjugate gradient method that solves a system of linear equations over a
two-dimensional grid of size N ×N in T iterations with W (N, T) = 20N2T ,
Q(N, T) ≥ 6N2T doubles.

1. Compute for all three algorithms upper bounds on the operational intensity I(N) or
I(N, T) (unit: flops/byte).

Solution:

MMM:

I(N) ≤ W (N)

8Q(N)
= 0.5

√
2γ flops/byte = Î .

FFT:

I(N) ≤ W (N)

8Q(N)
=

log2 γ

8
flops/byte = Î .

CG:

I(N, T) ≤ W (N, T)

8Q(N, T)
=

5

12
flops/byte = Î .

10 of 13

2. We continue with assume a system that the computer has a peak performance of
π = 4 flops/cycle and a memory bandwidth of β = 8 bytes per cycle. Determine,
separately for all three cases, the cache sizes γ (again measured in doubles, and a
power of 2) for which the computation is memory bound:

Solution: A computation is memory bound if and only if I(N) < π
β
.

MMM:

Î <
π

β
=

1

2
flops/byte ⇐⇒ γ < 0.5 double

This means that the only way to ensure that MMM is always memory bound is to
eliminate the cache.

FFT:

Î <
π

β
=

1

2
flops/byte ⇐⇒ γ < 24 double

CG:

Î <
π

β
=

1

2
flops/byte =⇒ The computation is always memory bound.

11 of 13

Problem 7 (12 = 2 + 5 + 5)

Assume a CPU with the following parameters:

• Frequency f = 5 GHz

• One cache (L1) with instant access (i.e., no latency, infinite bandwidth)

• Main memory with access bandwidth of β doubles/cycle and a latency of `RAM = 100
ns (time needed to have a double available for computation)

• Peak performance of 2 flops/cycle

1. Determine β (make it low enough) such that every L1 miss contributes exactly `RAM

to the total execution time.

Solution: We need to enforce a bandwidth capable of transferring a double every
`RAM:

β =
1

f · `RAM

=
1

500
doubles/cycle.

2. Now we execute a program P on this CPU with W (N) = 20N2 flops and accesses
A(N) = N2 doubles. If all accesses did hit the cache, P would run at the CPU’s
peak. However, the hit rate is 96%. What is the runtime of P (using β from the
previous part)? Assume that the computation and memory accesses do not overlap.

Solution:

T1 =
W (N)

2
+ 0.04 · A(N) · f · `RAM cycles = 10N2 + 20N2 = 30N2 cycles .

12 of 13

3. Assume the introduction of a second cache (L2) with access bandwidth of β (same as
main memory) and latency 10 ns. The miss rate for this cache for program P is 0.5%.
What is the speed-up obtained for P by introducing this cache?

Solution: We provide two alternatives both considered acceptable:

(a) Assuming that both L2’s and RAM’s bandwidth are the same we don’t notice
any significant speed-up:

T2 =
W (N)

2
+ f · `L2 + ((0.04− 0.005) · A(N)− 1) · f · `RAM + 0.005 · A(N) · f · `RAM

≈ W (N)

2
+ 0.04 · A(N) · f · `RAM cycles = 10N2 + 20N2 = 30N2 cycles .

(b) Assuming that a condition similar to the one in 1 holds for the L2’s bandwidth
(i.e., βL2 = 1/`L2) we obtain the following:

T2 =
W (N)

2
+ (0.04− 0.005) · A(N) · f · `L2 + 0.005 · A(N) · f · `RAM

= 10N2 + 1.75N2 + 2.5N2 = 14.25N2 cycles.

Finally, we conclude that the speed-up compared to the single-cache system is

T1
T2

=
30N2

14.25N2
= 2.1.

13 of 13

