ETH login ID:

(Please print in capital letters)

Full name:

263-2300: How to Write Fast Numerical Code

ETH Computer Science, Spring 2015
Midterm Exam
Wednesday, April 15, 2015

Instructions

- Make sure that your exam is not missing any sheets, then write your full name and login ID on the front.
- No extra sheets are allowed.
- The exam has a maximum score of 100 points.
- No books, notes, calculators, laptops, cell phones, or other electronic devices are allowed.

Problem $1(16=1+1+5+4+5)$
Problem $2(18=3+15)$
Problem $3(18=2+6+10)$
Problem $4(12=2+2+2+2+2+2)$
Problem 5 (12)
Problem $6(12=6+6)$
Problem $7(12=2+5+5)$

Total (100) \square

Problem $1(16=1+1+5+4+5)$

We consider a 128 byte data cache that is 2 -way associative and can hold 4 doubles in every cache line. A double is assumed to require 8 bytes.

For the below C code we assume a cold cache. Further, we consider an array A of 32 doubles that is cache aligned (that is, A [0] is loaded into the first slot of a cache line in the first set). All other variables are held in registers. The code is parameterized by positive integers m and n that satisfy $m * n=32$ (i.e., if you know one you know the other).

```
int i, j;
double A[32], t = 0;
for(i = 0; i < m; i++)
    for(j = 0; j < n; j++)
        t += A[j * m + i];
```

Answer the following:

1. How many doubles can the cache hold? $\mathbf{1 6}$
2. How many sets does the cache have? $\mathbf{2}$
3. For $m=1$:
(a) Determine the miss rate. $\frac{1}{4}$
(b) What kind of misses occur? Compulsory.
(c) What kind of locality does the code have with respect to accesses of A and this cache? Spatial locality.
4. For $m=2$:
(a) Determine the miss rate. $\frac{1}{2}$
(b) What kind of misses occur? Compulsory \& conflict.
5. For $m=16$:
(a) Determine the miss rate. $\frac{1}{4}$
(b) What kind of misses occur? Compulsory.
(c) What kind of locality does the code have with respect to accesses of A and this cache? Spatial locality.

Problem 2 (18 $=3+15$ points)

Consider the following code, which computes the Cholesky decomposition of a hermitian positive definite matrix A $(N \times N)$.

```
void cholesky(float **A, float **L, int N) {
    int i,j,k;
    float temp;
    for(j = 0; j < N; j++){
        temp = A[j][j];
        for(k = 0; k < j; k++){
            temp = temp - L[j][k]*L[j][k];
        }
        L[j][j] = sqrt(temp);
        for(i = j+1; i < N; i++){
            temp = A[i][j];
            for(k = 0; k < j; k++) {
                temp = temp - L[i][k]*L[j][k];
            }
                L[i][j] = temp/L[j][j];
        }
    }
}
```

1. Define a detailed floating point cost measure $C(N)$ for the function cholesky. Ignore integer operations.

Solution:

$$
C(N)=\{\operatorname{add}(N), \operatorname{mul}(N), \operatorname{div}(N), \operatorname{sqrt}(N)\}
$$

2. Compute the cost $C(N)$ as just defined.

Solution:

$$
\begin{aligned}
\operatorname{add}(N) & =\frac{N^{3}}{6}+\mathcal{O}\left(N^{2}\right) \\
\operatorname{mul}(N) & =\frac{N^{3}}{6}+\mathcal{O}\left(N^{2}\right) \\
\operatorname{div}(N) & =\frac{N^{2}}{2}+\mathcal{O}(N) \\
\operatorname{sqrt}(N) & =N
\end{aligned}
$$

Notes: Lower-order terms (and only those) may be expressed using big-O notation. This means: as the final result something like $3 n+O(\log (n))$ would be ok but $O(n)$ is not.

The following formulas may be helpful:

- $\sum_{i=0}^{n-1} i=\frac{n(n-1)}{2}=\frac{n^{2}}{2}+O(n)$
- $\sum_{i=0}^{n-1} i^{2}=\frac{(n-1) n(2 n-1)}{6}=\frac{n^{3}}{3}+O\left(n^{2}\right)$

Problem 3 (18 = $2+6+10$ points)

Assume you are using a system with the following features:

- A CPU that can issue 2 single precision multiplications and 2 single precision additions/subtractions per cycle.
- The interconnection between CPU and main memory (size 16 GB) has a maximal bandwidth of 8 bytes/cycle.
- The last level cache is write-allocate/write-back, direct mapped, has size 8 MB and block size of 64 bytes.

Answer the following two questions:

1. Draw the roofline plot for this system:

2. Consider the following code where all the entries in matrix m are initialized between 0 and 1:
```
void compute(float m[64]) {
    int i;
    for(i = 1; i < 64; i++) {
        m[i-1] = (1 - m[i-1]) * m[i];
        m[i] = (1 - m[i]) * m[i-1];
    }
}
```

Assume a cold cache, that the operators are left associative (expressions are evaluated from left to right), and that a float takes 4 bytes. Now compute,
(a) The operational intensity of this code (ignore write-backs).

Solution:

There are 63 iterations, each iteration performs 4 flops, so $W(N)=4 * 63=252$ flops. All entries in matrix are read once so $Q(N)=64 * 4=256$ bytes are loaded into cache. This gives

$$
I(N)=252 / 256 \approx 1 f / b
$$

(b) An upper bound (as tight as possible) for performance on the specified system.

You are allowed to make minor approximations. Show your work.

Solution:

Since $I(N)>\frac{1}{2}$, the code is compute bound. However it is not possible to achieve peak performance of $4 \mathrm{f} / \mathrm{c}$ due to dependencies in the computation. For i-th iteration, the assignment to $m[i-1]$ at line 5 depends (except when $\mathrm{i}=1$) on $m[i-1]$ which was computed at line 6 in $(i-1)$-th iteration. Similarly, assignment to $m[i]$ at line 6 depends on $m[i-1]$ computed previously at line 5 . Because of these dependencies, $(i+1)$-th iteration cannot be interleaved with i-th iteration. For i-th iteration, two substitutions can be issued in parallel. The multiplication at line 5 can only be issued after substitution at line 5 is complete. Similarly, multiplication at line 6 can only be issued after previous multiplication at line 5 is completed. The number of cycles required for this can be either 3 or 1.5 depending on the processor. We accept both solutions, thus the upper bound for performance is $\frac{4}{3}\left(\frac{4}{1.5}\right) \mathrm{f} / \mathrm{c}$.
3. Consider the following code where alpha is initialized between 0 and 1 :

```
void compute(float A[4096][4096], float alpha) {
    int i,j;
    for(i = 0; i < 4096; i++)
        for(j=0; j < 4096; j++)
            A[i][j] = alpha*A[i][i] + (1 - alpha)*A[j][j];
}
```

Assume a cold cache, that the operators are left associative (expressions are evaluated from left to right), and that a float takes 4 bytes. Now compute,
(a) The operational intensity of this code (ignore write-backs).

Solution:

The size of the matrix is $2^{12} \times 2^{12} \times 4=2^{26}=64 M B$. Since the size of cache is $8 M B$ only, it can accommodate only $\frac{1}{8}$-th of the matrix. The diagonal operands $A[j][j](A[i][i])$ are accessed in stride of 4097. Since the cache is direct mapped, $\approx \frac{2^{2 /}}{2^{8}}=512$ blocks are used for $A[j][j](A[i][i])$. This results in cache miss for each access to $A[j][j]$. Access to $A[i][i]$ will be cache miss after ≈ 512 iterations of j-loop. Note that $A[j][j](A[i][i])$ can also be replaced by $A[i][j]$ (vice versa). For simplicity, we ignore misses for $A[i][j], A[i][i]$, thus at least 64 bytes needs to be loaded at every iteration for performing 4 flops. Thus,

$$
I(N) \approx \frac{4}{64}=\frac{1}{16} f / b
$$

(b) An upper bound (as tight as possible) for performance on the specified system.

You are allowed to make minor approximations. Show your work.

Solution:

Since $I(N)<\frac{1}{2}$, the computation is memory bound and the peak performance has upper bound of $\frac{1}{16} \times \beta=\frac{1}{16} \times 8=\frac{1}{2} \mathrm{f} / \mathrm{c}$.

Problem $4(12=2+2+2+2+2+2)$

Mark the following statements as true (T) or false (F). Explanations are not needed. Wrong answers give negative points but you cannot get less than 0 points for this problem. You can leave questions unanswered.Assume a program runs N many floating point adds and N many floating point mults and that the gaps for the two instructions are respectively g_{1} and g_{2} cycles/issue. Then assuming a warm cache scenario where the data set fits in cache and that accesses to the cache have a negligible cost the achievable peak performance can always be estimated as $\pi=\frac{1}{g_{1}}+\frac{1}{g_{2}}$ flops/cycle.A direct mapped cache with parameters
(number of sets, associativity, block size) $=(S, 1, B)$ always produces twice as many conflict misses as a 2 -way set associative cache with parameters $(S / 2,2, B)$.Data prefetching can increase operational intensity.Every TLB miss will also cause a cache miss.Every cache miss will also cause a TLB miss.If two algorithms solve the same problem in the same time, they have the same performance.

Solution: All statements are false.

Problem 5 (12)

Associative caches were designed to reduce conflict misses. However, increasing associativity (while maintaining the cache size) does not guarantee to achieve this in all cases. Consider a cache C_{1} with (number of sets, associativity, block size) $=(S, 1,8)$, i.e., the block size is one double. A second cache C_{2} has the same size with parameters $(S / 2,2,8)$. Both have LRU replacement and are empty.

Consider an array a of $2 S$ doubles that is cache-aligned (i.e., a [0] is mapped to the first block of either cache). Provide an access sequence (of a length that you can choose) to this array such that on C_{1} fewer misses occur than on C_{2}.

Hint: It helps to draw the caches.
Solution: Two possible sequences are $0 ; \frac{S}{2} ; \frac{3 S}{2} ; 0$ and $0 ; \frac{S}{2} ; S ; 0 ; \frac{S}{2}$.

Problem $6(12=6+6)$

In this problem we consider a computer with a fully associative cache of size γ (measured in doubles; one double is 8 bytes) and three algorithms for which the flop count W and lower bounds for the minimal memory traffic Q (in doubles) are known:

MMM: Matrix multiplication of $N \times N$ matrices with $W(N)=2 N^{3}, Q(N) \geq \frac{N^{3}}{2 \sqrt{2 \gamma}}$ doubles.

FFT: A variant of an N-point fast Fourier transform (N a power of 2) with $W(N)=2 N \log _{2} N, Q(N) \geq \frac{2 N \log _{2} N}{\log _{2} \gamma}$ doubles.

CG: A conjugate gradient method that solves a system of linear equations over a two-dimensional grid of size $N \times N$ in T iterations with $W(N, T)=20 N^{2} T$, $Q(N, T) \geq 6 N^{2} T$ doubles.

1. Compute for all three algorithms upper bounds on the operational intensity $I(N)$ or $I(N, T)$ (unit: flops/byte).

Solution:

MMM:

$$
I(N) \leq \frac{W(N)}{8 Q(N)}=0.5 \sqrt{2 \gamma} \text { flops } / \text { byte }=\hat{I} .
$$

FFT:

$$
I(N) \leq \frac{W(N)}{8 Q(N)}=\frac{\log _{2} \gamma}{8} \text { flops } / \text { byte }=\hat{I}
$$

CG:

$$
I(N, T) \leq \frac{W(N, T)}{8 Q(N, T)}=\frac{5}{12} \text { flops } / \text { byte }=\hat{I} .
$$

2. We continue with assume a system that the computer has a peak performance of $\pi=4$ flops/cycle and a memory bandwidth of $\beta=8$ bytes per cycle. Determine, separately for all three cases, the cache sizes γ (again measured in doubles, and a power of 2) for which the computation is memory bound:

Solution: A computation is memory bound if and only if $I(N)<\frac{\pi}{\beta}$.
MMM:

$$
\hat{I}<\frac{\pi}{\beta}=\frac{1}{2} \text { flops } / \text { byte } \Longleftrightarrow \gamma<0.5 \text { double }
$$

This means that the only way to ensure that MMM is always memory bound is to eliminate the cache.

FFT:

$$
\hat{I}<\frac{\pi}{\beta}=\frac{1}{2} \text { flops } / \text { byte } \Longleftrightarrow \gamma<2^{4} \text { double }
$$

CG:

$$
\hat{I}<\frac{\pi}{\beta}=\frac{1}{2} \text { flops } / \text { byte } \Longrightarrow \text { The computation is always memory bound. }
$$

Problem $7(12=2+5+5)$

Assume a CPU with the following parameters:

- Frequency $f=5 \mathrm{GHz}$
- One cache (L1) with instant access (i.e., no latency, infinite bandwidth)
- Main memory with access bandwidth of β doubles/cycle and a latency of $\ell_{\text {RAM }}=100$ ns (time needed to have a double available for computation)
- Peak performance of 2 flops/cycle

1. Determine β (make it low enough) such that every L1 miss contributes exactly $\ell_{\text {RAM }}$ to the total execution time.

Solution: We need to enforce a bandwidth capable of transferring a double every $\ell_{\text {RAM }}$:

$$
\beta=\frac{1}{f \cdot \ell_{\mathrm{RAM}}}=\frac{1}{500} \text { doubles/cycle. }
$$

2. Now we execute a program P on this CPU with $W(N)=20 N^{2}$ flops and accesses $A(N)=N^{2}$ doubles. If all accesses did hit the cache, P would run at the CPU's peak. However, the hit rate is 96%. What is the runtime of P (using β from the previous part)? Assume that the computation and memory accesses do not overlap.

Solution:

$$
T_{1}=\frac{W(N)}{2}+0.04 \cdot A(N) \cdot f \cdot \ell_{\mathrm{RAM}} \text { cycles }=10 N^{2}+20 N^{2}=30 N^{2} \text { cycles }
$$

3. Assume the introduction of a second cache (L2) with access bandwidth of β (same as main memory) and latency 10 ns . The miss rate for this cache for program P is 0.5%. What is the speed-up obtained for P by introducing this cache?

Solution: We provide two alternatives both considered acceptable:
(a) Assuming that both L2's and RAM's bandwidth are the same we don't notice any significant speed-up:

$$
\begin{aligned}
T_{2} & =\frac{W(N)}{2}+f \cdot \ell_{\mathrm{L} 2}+((0.04-0.005) \cdot A(N)-1) \cdot f \cdot \ell_{\mathrm{RAM}}+0.005 \cdot A(N) \cdot f \cdot \ell_{\mathrm{RAM}} \\
& \approx \frac{W(N)}{2}+0.04 \cdot A(N) \cdot f \cdot \ell_{\mathrm{RAM}} \text { cycles }=10 N^{2}+20 N^{2}=30 N^{2} \text { cycles } .
\end{aligned}
$$

(b) Assuming that a condition similar to the one in 1 holds for the L2's bandwidth (i.e., $\beta_{\mathrm{L} 2}=1 / \ell_{\mathrm{L} 2}$) we obtain the following:

$$
\begin{aligned}
T_{2} & =\frac{W(N)}{2}+(0.04-0.005) \cdot A(N) \cdot f \cdot \ell_{\mathrm{L} 2}+0.005 \cdot A(N) \cdot f \cdot \ell_{\mathrm{RAM}} \\
& =10 N^{2}+1.75 N^{2}+2.5 N^{2}=14.25 N^{2} \text { cycles. }
\end{aligned}
$$

Finally, we conclude that the speed-up compared to the single-cache system is

$$
\frac{T_{1}}{T_{2}}=\frac{30 N^{2}}{14.25 N^{2}}=2.1
$$

