ETH login ID: ____________________________
(Please print in capital letters)

Full name: ______________________________

263-2300: How to Write Fast Numerical Code
ETH Computer Science, Spring 2015
Midterm Exam
Wednesday, April 15, 2015

Instructions

• Make sure that your exam is not missing any sheets, then write your full name and login ID on the front.

• No extra sheets are allowed.

• The exam has a maximum score of 100 points.

• No books, notes, calculators, laptops, cell phones, or other electronic devices are allowed.

Problem 1 (16 = 1+1+5+4+5)
Problem 2 (18 = 3+15)
Problem 3 (18 = 2+6+10)
Problem 4 (12 = 2 + 2 + 2 + 2 + 2 + 2)
Problem 5 (12)
Problem 6 (12 = 6 + 6)
Problem 7 (12 = 2 + 5 + 5)

Total (100)
Problem 1 \((16 = 1 + 1 + 5 + 4 + 5)\)

We consider a 128 byte data cache that is 2-way associative and can hold 4 doubles in every cache line. A double is assumed to require 8 bytes.

For the below C code we assume a cold cache. Further, we consider an array \(A\) of 32 doubles that is cache aligned (that is, \(A[0]\) is loaded into the first slot of a cache line in the first set). All other variables are held in registers. The code is parameterized by positive integers \(m\) and \(n\) that satisfy \(m \times n = 32\) (i.e., if you know one you know the other).

```c
1 int i, j;
2 double A[32], t = 0;
3 for (i = 0; i < m; i++)
4    for (j = 0; j < n; j++)
5        t += A[j * m + i];
```

Answer the following:

1. How many doubles can the cache hold? 16
2. How many sets does the cache have? 2
3. For \(m = 1\):
 (a) Determine the miss rate. \(\frac{1}{4}\)
 (b) What kind of misses occur? Compulsory.
 (c) What kind of locality does the code have with respect to accesses of \(A\) and this cache? Spatial locality.
4. For \(m = 2\):
 (a) Determine the miss rate. \(\frac{1}{2}\)
 (b) What kind of misses occur? Compulsory & conflict.
5. For \(m = 16\):
 (a) Determine the miss rate. \(\frac{1}{4}\)
 (b) What kind of misses occur? Compulsory.
 (c) What kind of locality does the code have with respect to accesses of \(A\) and this cache? Spatial locality.
Problem 2 (18 = 3 + 15 points)

Consider the following code, which computes the Cholesky decomposition of a hermitian positive definite matrix \(A (N \times N) \).

```c
void cholesky(float **A, float **L, int N){
    int i,j,k;
    float temp;
    for(j = 0; j < N; j++){
        temp = A[j][j];
        for(k = 0; k < j; k++){
            temp = temp - L[j][k]*L[j][k];
        }
        L[j][j] = sqrt(temp);
        for(i = j+1; i < N; i++){
            temp = A[i][j];
            for(k = 0; k < j; k++){
                temp = temp - L[i][k]*L[j][k];
            }
            L[i][j] = temp/L[j][j];
        }
    }
}
```

1. Define a detailed floating point cost measure \(C(N) \) for the function `cholesky`. Ignore integer operations.

Solution:

\(C(N) = \{ \text{add}(N), \text{mul}(N), \text{div}(N), \text{sqrt}(N) \} \)

2. Compute the cost \(C(N) \) as just defined.

Solution:

\[
\text{add}(N) = \frac{N^3}{6} + \mathcal{O}(N^2)
\]
\[
\text{mul}(N) = \frac{N^3}{6} + \mathcal{O}(N^2)
\]
\[
\text{div}(N) = \frac{N^2}{2} + \mathcal{O}(N)
\]
\[
\text{sqrt}(N) = N
\]

Notes: Lower-order terms (and only those) may be expressed using big-O notation. This means: as the final result something like \(3n + O(\log(n)) \) would be ok but \(O(n) \) is not.

The following formulas may be helpful:
\[\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2} = \frac{n^2}{2} + O(n) \]

\[\sum_{i=0}^{n-1} i^2 = \frac{(n-1)n(2n-1)}{6} = \frac{n^3}{3} + O(n^2) \]
Problem 3 \((18 = 2 + 6 + 10 \text{ points})\)

Assume you are using a system with the following features:

- A CPU that can issue 2 single precision multiplications and 2 single precision additions/subtractions per cycle.
- The interconnection between CPU and main memory (size 16 GB) has a maximal bandwidth of 8 bytes/cycle.
- The last level cache is write-allocate/write-back, direct mapped, has size 8 MB and block size of 64 bytes.

Answer the following two questions:

1. Draw the roofline plot for this system:
2. Consider the following code where all the entries in matrix \(m \) are initialized between 0 and 1:

```c
void compute(float m[64]) {
    int i;
    for(i = 1; i < 64; i++) {
        m[i-1] = (1 - m[i-1]) * m[i];
        m[i] = (1 - m[i]) * m[i-1];
    }
}
```

Assume a cold cache, that the operators are left associative (expressions are evaluated from left to right), and that a float takes 4 bytes. Now compute,

(a) The operational intensity of this code (ignore write-backs).

Solution:

There are 63 iterations, each iteration performs 4 flops, so \(W(N) = 4 * 63 = 252 \) flops. All entries in matrix are read once so \(Q(N) = 64 * 4 = 256 \) bytes are loaded into cache. This gives

\[
I(N) = \frac{252}{256} \approx 1 f/b
\]

(b) An upper bound (as tight as possible) for performance on the specified system.

You are allowed to make minor approximations. Show your work.

Solution:

Since \(I(N) > \frac{1}{2} \), the code is compute bound. However it is not possible to achieve peak performance of 4 f/c due to dependencies in the computation. For \(i \)-th iteration, the assignment to \(m[i-1] \) at line 5 depends (except when \(i = 1 \)) on \(m[i-1] \) which was computed at line 6 in \((i-1)\)-th iteration. Similarly, assignment to \(m[i] \) at line 6 depends on \(m[i-1] \) computed previously at line 5. Because of these dependencies, \((i+1)\)-th iteration cannot be interleaved with \(i \)-th iteration. For \(i \)-th iteration, two substitutions can be issued in parallel. The multiplication at line 5 can only be issued after substitution at line 5 is complete. Similarly, multiplication at line 6 can only be issued after previous multiplication at line 5 is completed. The number of cycles required for this can be either 3 or 1.5 depending on the processor. We accept both solutions, thus the upper bound for performance is \(\frac{4}{3} \left(\frac{4}{1.5} \right) f/c \).
3. Consider the following code where \textit{alpha} is initialized between 0 and 1:

```c
void compute(float A[4096][4096], float alpha) {
    int i, j;
    for(i = 0; i < 4096; i++)
        for(j=0; j < 4096; j++)
}
```

Assume a cold cache, that the operators are left associative (expressions are evaluated from left to right), and that a float takes 4 bytes. Now compute,

(a) The operational intensity of this code (ignore write-backs).

\begin{solution}

The size of the matrix is \(2^{12} \times 2^{12} \times 4 = 2^{26} = 64MB\). Since the size of cache is \(8MB\) only, it can accommodate only \(\frac{1}{8}\)-th of the matrix. The diagonal operands \(A[j][j] (A[i][i])\) are accessed in stride of 4097. Since the cache is direct mapped, \(\approx \frac{2^{11}}{2^{10}} = 512\) blocks are used for \(A[j][j] (A[i][i])\). This results in cache miss for each access to \(A[j][j]\). Access to \(A[i][i]\) will be cache miss after \(\approx 512\) iterations of \(j\)-loop. Note that \(A[j][j] (A[i][i])\) can also be replaced by \(A[i][j]\) (vice versa). For simplicity, we ignore misses for \(A[i][j], A[i][i]\), thus at least 64 bytes needs to be loaded at every iteration for performing 4 flops. Thus,

\[I(N) \approx \frac{4}{64} = \frac{1}{16} f/b \]

(b) An upper bound (as tight as possible) for performance on the specified system.

You are allowed to make minor approximations. Show your work.

\begin{solution}

Since \(I(N) < \frac{1}{2}\), the computation is memory bound and the peak performance has upper bound of \(\frac{1}{16} \times \beta = \frac{1}{16} \times 8 = \frac{1}{2} f/c\).

\end{solution}

7 of 13
Problem 4 (12 = 2 + 2 + 2 + 2 + 2 + 2)

Mark the following statements as true (T) or false (F). Explanations are not needed. Wrong answers give negative points but you cannot get less than 0 points for this problem. You can leave questions unanswered.

☐ Assume a program runs N many floating point adds and N many floating point mults and that the gaps for the two instructions are respectively g_1 and g_2 cycles/issue. Then assuming a warm cache scenario where the data set fits in cache and that accesses to the cache have a negligible cost the achievable peak performance can always be estimated as $\pi = \frac{1}{g_1} + \frac{1}{g_2}$ flops/cycle.

☐ A direct mapped cache with parameters (number of sets, associativity, block size) = (S, 1, B) always produces twice as many conflict misses as a 2-way set associative cache with parameters ($S/2$, 2, B).

☐ Data prefetching can increase operational intensity.

☐ Every TLB miss will also cause a cache miss.

☐ Every cache miss will also cause a TLB miss.

☐ If two algorithms solve the same problem in the same time, they have the same performance.

Solution: All statements are false.
Problem 5 (12)

Associative caches were designed to reduce conflict misses. However, increasing associativity (while maintaining the cache size) does not guarantee to achieve this in all cases. Consider a cache C_1 with (number of sets, associativity, block size) = $(S, 1, 8)$, i.e., the block size is one double. A second cache C_2 has the same size with parameters $(S/2, 2, 8)$. Both have LRU replacement and are empty.

Consider an array a of $2S$ doubles that is cache-aligned (i.e., $a[0]$ is mapped to the first block of either cache). Provide an access sequence (of a length that you can choose) to this array such that on C_1 fewer misses occur than on C_2.

Hint: It helps to draw the caches.

Solution: Two possible sequences are $0, S, 3S, 0$ and $0, S, S, 0, S$.
Problem 6 ($12 = 6 + 6$)

In this problem we consider a computer with a fully associative cache of size γ (measured in doubles; one double is 8 bytes) and three algorithms for which the flop count W and lower bounds for the minimal memory traffic Q (in doubles) are known:

MMM: Matrix multiplication of $N \times N$ matrices with $W(N) = 2N^3$, $Q(N) \geq \frac{N^3}{2\sqrt{2}\gamma}$ doubles.

FFT: A variant of an N-point fast Fourier transform (N a power of 2) with $W(N) = 2N \log_2 N$, $Q(N) \geq \frac{2N \log_2 N}{\log_2 \gamma}$ doubles.

CG: A conjugate gradient method that solves a system of linear equations over a two-dimensional grid of size $N \times N$ in T iterations with $W(N,T) = 20N^2T$, $Q(N,T) \geq 6N^2T$ doubles.

1. Compute for all three algorithms upper bounds on the operational intensity $I(N)$ or $I(N,T)$ (unit: flops/byte).

Solution:

MMM:

$$I(N) \leq \frac{W(N)}{8Q(N)} = 0.5\sqrt{2\gamma} \text{ flops/byte} = \hat{I}.$$

FFT:

$$I(N) \leq \frac{W(N)}{8Q(N)} = \frac{\log_2 \gamma}{8} \text{ flops/byte} = \hat{I}.$$

CG:

$$I(N,T) \leq \frac{W(N,T)}{8Q(N,T)} = \frac{5}{12} \text{ flops/byte} = \hat{I}.$$
2. We continue with assume a system that the computer has a peak performance of \(\pi = 4 \text{ flops/cycle} \) and a memory bandwidth of \(\beta = 8 \text{ bytes per cycle} \). Determine, separately for all three cases, the cache sizes \(\gamma \) (again measured in doubles, and a power of 2) for which the computation is memory bound:

Solution: A computation is memory bound if and only if \(I(N) < \frac{\pi}{\beta} \).

MMM:

\[
\hat{I} < \frac{\pi}{\beta} = \frac{1}{2} \text{ flops/byte} \iff \gamma < 0.5 \text{ double}
\]

This means that the only way to ensure that MMM is always memory bound is to eliminate the cache.

FFT:

\[
\hat{I} < \frac{\pi}{\beta} = \frac{1}{2} \text{ flops/byte} \iff \gamma < 2^4 \text{ double}
\]

CG:

\[
\hat{I} < \frac{\pi}{\beta} = \frac{1}{2} \text{ flops/byte} \implies \text{The computation is always memory bound.}
\]
Problem 7 \((12 = 2 + 5 + 5)\)

Assume a CPU with the following parameters:

- Frequency \(f = 5\) GHz
- One cache (L1) with instant access (i.e., no latency, infinite bandwidth)
- Main memory with access bandwidth of \(\beta\) doubles/cycle and a latency of \(\ell_{\text{RAM}} = 100\) ns (time needed to have a double available for computation)
- Peak performance of 2 flops/cycle

1. Determine \(\beta\) (make it low enough) such that every L1 miss contributes exactly \(\ell_{\text{RAM}}\) to the total execution time.

Solution: We need to enforce a bandwidth capable of transferring a double every \(\ell_{\text{RAM}}\):

\[
\beta = \frac{1}{f \cdot \ell_{\text{RAM}}} = \frac{1}{500} \text{ doubles/cycle.}
\]

2. Now we execute a program \(P\) on this CPU with \(W(N) = 20N^2\) flops and accesses \(A(N) = N^2\) doubles. If all accesses did hit the cache, \(P\) would run at the CPU’s peak. However, the hit rate is 96%. What is the runtime of \(P\) (using \(\beta\) from the previous part)? Assume that the computation and memory accesses do not overlap.

Solution:

\[
T_1 = \frac{W(N)}{2} + 0.04 \cdot A(N) \cdot f \cdot \ell_{\text{RAM}} \text{ cycles} = 10N^2 + 20N^2 = 30N^2 \text{ cycles .}
\]
3. Assume the introduction of a second cache (L2) with access bandwidth of β (same as main memory) and latency 10 ns. The miss rate for this cache for program P is 0.5%. What is the speed-up obtained for P by introducing this cache?

Solution: We provide two alternatives both considered acceptable:

(a) Assuming that both L2’s and RAM’s bandwidth are the same we don’t notice any significant speed-up:

$$T_2 = \frac{W(N)}{2} + f \cdot \ell_{L2} + ((0.04 - 0.005) \cdot A(N) - 1) \cdot f \cdot \ell_{RAM} + 0.005 \cdot A(N) \cdot f \cdot \ell_{RAM}$$

$$\approx \frac{W(N)}{2} + 0.04 \cdot A(N) \cdot f \cdot \ell_{RAM} \text{ cycles} = 10N^2 + 20N^2 = 30N^2 \text{ cycles}.$$

(b) Assuming that a condition similar to the one in [1] holds for the L2’s bandwidth (i.e., $\beta_{L2} = 1/\ell_{L2}$) we obtain the following:

$$T_2 = \frac{W(N)}{2} + (0.04 - 0.005) \cdot A(N) \cdot f \cdot \ell_{L2} + 0.005 \cdot A(N) \cdot f \cdot \ell_{RAM}$$

$$= 10N^2 + 1.75N^2 + 2.5N^2 = 14.25N^2 \text{ cycles}.$$

Finally, we conclude that the speed-up compared to the single-cache system is

$$\frac{T_1}{T_2} = \frac{30N^2}{14.25N^2} = 2.1.$$