
263-2300-00: How To Write Fast Numerical Code
Assignment 3: 100 points

Due Date: Th, March 19th, 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/course.html

Questions: fastcode@lists.inf.ethz.ch

Submission instructions (read carefully):

• (Submission)
Homework is submitted through the Moodle system https://moodle-app2.let.ethz.ch/course/view.php?id=1317.
Before submission, you must enroll in the Moodle course. Enrollment key is “263-2300”.

• (Late policy)
You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours after the due
time. Note that each homework will be available for submission on the Moodle system 2 days after the deadline.
However, if the accumulated time of the previous homework submissions exceeds 3 days, the homework will
not count.

• (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert it to PDF and name
it homework.pdf. When submitting more than one file, make sure you create a zip archive that contains all
related files, and does not exceed 10 MB. Handwritten parts can be scanned and included or brought (in time)
to Alen’s or Daniele’s office. Late homeworks have to be submitted electronically.

• (Plots)
For plots/benchmarks, be concise, but provide necessary information (e.g., compiler and flags) and always
briefly discuss the plot and draw conclusions. Follow (at least to a reasonable extent) the small guide to
making plots (soon in lecture).

• (Neatness)
5% of the points in a homework are given for neatness.

Exercises:

1. Cache mechanics (12 pts) Consider an 8-way, 32KB cache with a cache block size of 64 bytes. Assume
64 GB of byte-addressable RAM, on a 64-bit machine.

(a) Determine the number of cache sets.

(b) Determine the length of the cache tag for each cache line. How many of those bits will be effectively
used on this particular machine ?

(c) For a given char * p with address 0xDE147BA (in hexadecimal format) calculate the cache tag
value, set index, and block offset. Express the obtained values in hexadecimal format.

2. Cache mechanics (12 pts) Consider a direct mapped cache of size 16KB with block size of 16 bytes.
Furthermore, the cache is write-back and write-allocate. Remember that sizeof(int) == 4. Assume
that the cache starts empty and that local variables and computations take place completely within
the registers and do not spill onto the stack.

Now consider the following two implementations of a horizontal flip and copy of the matrix. Assume
that the src matrix starts at address 0 and that the dest matrix follows immediately follows it.

(a) void copy n f l i p ma t r i x 1 (int des t [ROWS][COLS], int src [ROWS][COLS]) {

int i , j ;
for (i = 0; i < ROWS; i ++)

for (j = 0; j < COLS; j ++)
des t [i][COLS - 1 - j] = src [i][j];

}

i. What is the cache miss rate if ROWS = 64 and COLS = 64?

ii. What is the cache miss rate if ROWS = 96 and COLS = 64?

263-2300-00 SS15 / Assignment 3
Instructor: Markus Püschel

Pg 1 of 4 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/course.html
https://moodle-app2.let.ethz.ch/course/view.php?id=1317

(b) void copy n f l i p ma t r i x 2 (int des t [ROWS][COLS], int src [ROWS][COLS]) {

int i , j ;
for (j = 0; j < COLS; j ++)

for (i = 0; i < ROWS; i ++)
des t [i][COLS - 1 - j] = src [i][j];

}

i. What is the cache miss rate if ROWS = 64 and COLS = 64?

ii. What is the cache miss rate if ROWS = 96 and COLS = 64?

3. Cache mechanics (20 pts) In this problem, you will compare the performance of direct mapped and
4-way associative caches for the initialization of 2-dimensional arrays of data structures. Both caches
have a size of 1024 bytes. The direct mapped cache has 64-byte blocks while the 4-way associative
cache has 32-byte blocks. You are given the following definitions:

typedef struct{

float i r r [3];
short t h e t a ;
short phi ;

} photon t ;
photon t sur face [16][16];
register int i , j , k;

Also assume that

• sizeof(short) = 2 and sizeof(float) = 4

• surface begins at memory address 0

• Both caches are initially empty

• The array is stored in row-major order

• Variables i, j, k are stored in registers and any access to these variables does not cause a cache
miss.

(a) for (i = 0; i < 16; i ++) {

for (j = 0; j < 16; j ++) {

for(k = 0; k < 3; k ++) {

sur face [i][j]. i r r [k] = 0.;

}

sur face [i][j]. t h e t a = 0;

sur face [i][j]. phi = 0;

}

}

i. What fraction of the writes in the above code will result in a miss in the direct mapped cache?

ii. What fraction of the writes will result in a miss in the 4-way associative cache?

(b) for (i = 0; i < 16; i ++) {

for (j = 0; j < 16; j ++) {

for (k = 0; k < 3; k ++) {

sur face [j][i]. i r r [k] = 0;

}

sur face [j][i]. t h e t a = 0;

sur face [j][i]. phi = 0;

}

}

i. What fraction of the writes in the above code will result in a miss in the direct mapped cache?

ii. What fraction of the writes will result in a miss in the 4-way associative cache?

4. Roofline (25 pts) Assume the following hardware parameters for an Intel CPU:

• Can issue one scalar add and two scalar multiplications per cycle.

263-2300-00 SS15 / Assignment 3
Instructor: Markus Püschel

Pg 2 of 4 Computer Science
ETH Zurich

• CPU frequency is 3.5 GHz.

• Last level cache (LLC) size is 8 MB and cache block size is 64 bytes.

• Memory bandwidth is 28 Gbyte/sec.

Draw a roofline plot for single precision floating point operations on the given hardware. The units
for x-axis and y-axis are flops/byte and flops/cycle, respectively. Specifically, the plot should contain
2 lines:

(a) Upper bound based on peak performance π.

(b) Upper bound based on the maximal memory bandwidth β.

Provide enough detail (labels etc.) so we can check correctness.

Now consider running the following code on the platform above (all the matrices have size N ×N):

void compute1(float *A, float *B, float *C, s i z e t N) {

int i , j ,k;
for(i = 0; i < N; i ++)

for(j = 0; j < N; j ++)
for(k=0; k < N; k++)

C[i][j] = 0.4*C[i][j] + 0.6*A[i][k]*B[j][k];
}

(c) Is it possible to reach peak performance for compute1? If not, include a tighter performance
bound specific for compute1 in your roofline plot.

Again consider running the following code on the platform above (all the matrices have size N ×N):

void compute2(float *A, float *B, float *C, s i z e t N) {

int i , j ,k;
for(i = 0; i < N; i ++)

for(j = 0; j < N; j ++)
for(k=0; k < N; k++)

C[i][j] = C[i][j] + 0.6*A[i][k]*B[j][k];
}

(d) Is it possible to reach peak performance for compute2? If not, include a tighter performance
bound specific for compute2 in your roofline plot.

Finally consider the following code (all the matrices have size N ×N):

void compute3(float *A, float *B, float *C, s i z e t N) {

int i , j ,k;
for(i = 0; i < N; i ++)

for(j = 0; j < N; j ++)
for(k=0; k < N; k++)

C[i][j] = C[i][j] + 0.6*A[k][i]*B[k][j];
}

(e) Can the execution of compute3(A,B,C,65536) reach peak performance? If not, include a tighter
performance bound specific for this execution of compute3 in your roofline plot.

5. Roofline and MMM (26 pts)
We consider a processor with the following parameters:

• π: Peak performance in flops/cycle.

263-2300-00 SS15 / Assignment 3
Instructor: Markus Püschel

Pg 3 of 4 Computer Science
ETH Zurich

• β: Peak bandwidth in bytes/cycle.

• γ: Cache size in bytes (there is only one cache).

(a) Assume a function that is run for a given input size N . Show that if the dot of this function in
the roofline plot is on the ridge point (the point where the performance bound and the bandwidth
bound intersect) then Tcomp = Tmem. Here, Tcomp is the time required to execute the floating
point ops, and Tmem is the time to transfer the needed data from and to memory. Under which
condition is the reverse also true?

(b) Assume an implementation of matrix-matrix multiplication (MMM) with cost W (N) = 2N3 flops
for square matrices of size N × N . Also assume that this implementation incurs the minimal
number of cache misses possible and the dot in the roofline plot for all sizes lies on the ridge
point. Further, assume now the use of another CPU with the same parameters except for peak
performance, which is π′ = απ flops/cycle, with α > 1. On this CPU the MMM function will be
memory bound. By which factor should the cache size be increased to bring the dot back to the
ridge point? Explain.

263-2300-00 SS15 / Assignment 3
Instructor: Markus Püschel

Pg 4 of 4 Computer Science
ETH Zurich

