
263-2300-00: How To Write Fast Numerical Code
Assignment 2: 100 points

Due Date: Th, March 12th, 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/course.html

Questions: fastcode@lists.inf.ethz.ch

Submission instructions (read carefully):

• (Submission)
Homework is submitted through the Moodle system https://moodle-app2.let.ethz.ch/course/view.php?id=1317.
Before submission, you must enroll in the Moodle course. Enrollment key is “263-2300”.

• (Late policy)
You have 3 late days, but can use at most 2 on one homework, meaning submit latest 48 hours after the due
time. Note that each homework will be available for submission on the Moodle system 2 days after the deadline.
However, if the accumulated time of the previous homework submissions exceeds 3 days, the homework will
not count.

• (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert it to PDF and name
it homework.pdf. When submitting more than one file, make sure you create a zip archive that contains all
related files, and does not exceed 10 MB. Handwritten parts can be scanned and included or brought (in time)
to Alen’s or Daniele’s office. Late homeworks have to be submitted electronically.

• (Plots)
For plots/benchmarks, be concise, but provide necessary information (e.g., compiler and flags) and always
briefly discuss the plot and draw conclusions. Follow (at least to a reasonable extent) the small guide to
making plots (soon in lecture).

• (Neatness)
5% of the points in a homework are given for neatness.

Exercises:

1. Short project info (10 pts) Go to the list of mile stones for the projects. If you have not done that yet,
please register your project there. Read through the different points and fill in the first two with the
following about your project (be brief):

Point 1) An exact (as much as possible) but also short, problem specification.

For example for MMM, it could be like this:

Our goal is to implement matrix-matrix multiplication specified as follows:

Input: Two real matrices A,B of compatible size, A ∈ Rn×k and B ∈ Rk×m. We may impose
divisibility conditions on n, k,m depending on the actual implementation. Output: The matrix
product C = AB ∈ Rn×m.

Give the name of the algorithm you plan to consider for the problem and a precise reference (e.g.,
a link to a publication plus the page number) that explains it.

Point 2) A very short explanation of what kind of code already exists and in which language it is
written.

2. Vandermonde determinant (25 pts) Code needed
The code in vandermonde.cpp contains a class for representing Vandermonde matrices. The internal
representation of a Vandermonde matrix of size N ×N consists of an array of length N for storing the
second row of the matrix.

(a) The method Vandermonde::det() is used to compute the determinant of a matrix. Inspect the
method det() and determine its op count (double additions and multiplications only). Assign
the computed value to the macro OPCOUNT in vandermonde.cpp.

(b) Identify performance limitations in det() and implement an optimized version of the code in
Vandermonde::det opt().

263-2300-00 SS15 / Assignment 2
Instructor: Markus Püschel

Pg 1 of 3 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/course.html
https://moodle-app2.let.ethz.ch/course/view.php?id=1317
https://medellin.inf.ethz.ch/courses/263-2300-ETH/
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/homeworks/hw02files/vandermonde.zip
http://en.wikipedia.org/wiki/Vandermonde_matrix

(c) Compile the code disabling vectorization and determine its performance. Choose values of N up
to 4k doubles (you can select sizes and stride so to avoid leftovers in your computation). Collect
the results in a table and briefly list your optimization choices.

(d) Modify the function test() to collect performance measurements for the method det(). Use the
values of N previously chosen for det opt() and add your results to the table mentioned in 2c.

Report compiler, version, and flags. Submit your modified version of vandermonde.cpp to Moodle.

Solution

A possible reference solution can be found here.

3. Optimization Blockers (40 pts) Code needed
Download, extract and inspect the code. Your task is to optimize the function called superslow (guess
why it’s called like this?) in the file comp.c. The function runs over an n×n matrix and performs some
computation on each element. In its current implementation, superslow involves several optimization
blockers. Your task is to optimize the code.

Run make to compile the code. For Windows users, we recommend using Cygwin as a developing
environment. Edit the Makefile if needed (architecture flags specifying your processor). The generated
executable verifies the code and outputs the performance (the flop count is underestimated, since the
trigometric functions are ignored) of superslow. Proceed as follows

(a) Identify optimization blockers discussed in the lecture and remove them.

(b) For every optimization you perform, create a new function in comp.c that has the same signature
and register it to the timing framework through the register function procedure in comp.c Let
it run and, if it verifies, determine the performance.

(c) In the end, the innermost loop should be free of any procedure calls and operations other than
adds and mults.

(d) When done, rerun all code versions also with optimization flags turned off (−O0 in the Makefile).

(e) Create a table with the performance numbers. Two rows (optimization flags, no optimization
flags) and as many columns as versions of superslow. Briefly discuss the table.

(f) Submit your comp.c to Moodle.

What speedup do you achieve?

Solution

We achieved a speed up of 25.07x over the initial superslow function by setting the proper flags and
12.05x in the -O0 case. In the first case we reach 0.8374 F/C, and in the second 0.2182 F/C. Testing
environment:

• CPU Intel(R) Core(TM) i7-3720QM CPU 2.60GHz

• Mac OS X 10.10 (Yosemite)

• gcc 4.2.1 (Apple LLVM version 6.0 (clang-600.0.56))

• -O3 -m64 -march=corei7-avx

Results can be obtained here and transformation which would yield full points can be found here

4. Locality of Gaussian Elimination (20 pts)

Consider the following C code, which computes Gaussian Elimination of a Nonsingular Matrix A of
size N ×N .

double A[N] [N] , tmp ;
for (int k = 0 ; k < N; k++)

double max p = abs (A[k] [k]) ;
int ind p = k ;

// Find Pivot

263-2300-00 SS15 / Assignment 2
Instructor: Markus Püschel

Pg 2 of 3 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/homeworks/hw02files/vandermonde_refsol.cpp
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/homeworks/hw02files/blockers.zip
https://www.cygwin.com/
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/homeworks/hw02files/comp_results.txt
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring15/homeworks/hw02files/comp_refsol.c

for (int i = k+1; i < N; i++){
tmp = abs (A[i] [k]) ;
i f (tmp > max p){

max p = tmp ;
ind p = i ;

}
}

// Swap row conta in ing p i v o t with k−th row
for (int j = 0 ; j < N; j++){

tmp = A[ind p] [j] ;
A[ind p] [j] = A[k] [j] ;
A[k] [j] = tmp ;

}

// Main Loop fo r Gaussian El iminat ion
for (int i = k+1; i < N; i++){

for (int j = k+1; j < N; j++){
A[i] [j] = A[i] [j] − A[k] [j] ∗ (A[i] [k] /A[k] [k]) ;

}
A[i] [k] = 0 ;

}

Inspecting the data accesses, where do you see

(a) Temporal locality?

(b) Spatial locality?

Solution

1. Temporal Locality: The element A[k][k] inside main loop is accessed O(N2) times whereas element
A[i][k] is accessed O(N) times. Thus, both show temporal locality inside the main loop. Elements
A[ind p][j] and Elements A[k][j] inside the loop for swapping rows also show temporal locality as both
are accessed twice inside the loop.

2. Spatial Locality: The access to A[i][j], A[k][j] inside the main loop is sequential thus resulting in spatial
locality. Elements A[ind p][j] and Elements A[k][j] inside the loop for swapping rows are also accessed
sequentially thus resulting in spatial locality.

263-2300-00 SS15 / Assignment 2
Instructor: Markus Püschel

Pg 3 of 3 Computer Science
ETH Zurich

