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ABSTRACT

In this paper we port assumptions and techniques from DAG
(directed acyclic graph) learning and causal inference to time-
series graph data. In particular, we view such data as indexed
by a DAG obtained by unrolling the graph in time and gener-
ated by a causal linear structural equation model (SEM) from
only few causes. For this situation we solve two problems:
(1) learning the time series from samples, and (2) learning the
graph from time-series data by first learning the entire DAG
and then extracting the result. We empirically evaluate our ap-
proach targeting the few-causes assumption on both synthetic
and real-world data and show significant improvements over
prior methods.

Index Terms— Graph signal processing, DAG learning,
time-varying graph signals, sampling, Fourier-sparsity

1. INTRODUCTION

Graph signal processing (GSP) has evolved into a framework
[1, 2] and set of tools to analyze signals, or data associated with
the nodes of an undirected [3] or directed graph [4]. Among the
many applications are the problem of learning graph signals
from samples [5, 6] and learning the graph from data [7]. Most
work here has focused on the undirected case. For example,
[8, 9] imposes a smoothness criterion and [10, 11, 12] assumes
Fourier-sparsity based on the Laplacian decomposition. The
subject of this paper are time series of graph data.

Time-series graph data. Time series on graphs are graph
data collected over time, so each node is associated with a
time series, or, equivalently, each time step is associated with
a graph signal. The joint time-vertex signal processing frame-
work [13] uses Cartesian product decomposition to extend
GSP to such data, assuming undirected graphs and [14] gen-
eralizes it to directed graphs. Sampling and reconstruction of
such signals was considered in [15], and learning the graph
from time series in [16].

In this paper we are concerned with both problems, learn-
ing the signal from samples and learning the graph from time-
series data, however both method and assumptions are differ-
ent. Namely, we build on the idea of unrolling the graph in
time to obtain a directed acyclic graph (DAG) [17]. Then we

apply recent methods from causal inference and in particular
DAG learning to these problems. In particular, we assume
that the data have few causes in the sense of linear structural
equation models (SEMs) as explained next.

DAG learning from linear SEMs. DAGs are a common
model for data [18] with causal relationships captured by the
edges and thus learning the DAG from data is relevant for
causal inference, even though proving causality requires ad-
ditional techniques such as interventions [18]. One common
assumption is that the data follow a linear SEM [18, 19, 20]
and state-of-the-art DAG learning methods use continuous op-
timization constraints to enforce acyclicity [21, 22]. Among
the continuous optimization techniques some specialize on
learning DAGs from time-series data [23, 24].

The aforementioned methods for DAG learning assume
that the data are generated from a linear SEM or the anal-
ogous linear model for time series, called structural vector
autoregression (SVAR) [25]. A linear SEM can be viewed as
a linear transform that takes as input a DAG signal of causes
to compute the observed signal as output, and has been in-
terpreted as a form of inverse Fourier transform [26]. The
common assumption of the input in the above references has
been i.i.d. noise since its generality can express any Gaussian
distribution as output [27]. In [28] we motivated the situa-
tion of an approximately sparse input (i.e., Fourier-sparsity
in the sense of [26]), and proposed an associated DAG learn-
ing method, to capture the situation that only few nodes are
responsible for the observed signal.

Contributions. We port learning techniques from causal
inference with DAGs to time-series graph data. In particular
we model the data generation of time series on a graph as a
linear SEM on the associated time-unrolled DAG. Then we
adopt the assumption of few causes with unknown locations in
the linear SEM from [28] and solve two problems: (1) learning
the entire time series from samples, and (2) learning the graph
from the time series by first learning the entire time-unrolled
DAG and then extracting the graph from one time step. This
way the temporal relations in the time series are exploited. We
show superior performance in synthetic experiments compared
to prior work that does not exploit the assumption of few
causes. Then we show a prototypical real-world experiment
that illustrates how our assumptions can be useful in practice.



2. BACKGROUND

Graphs and DAGs. With G = (V,B) we denote a di-
rected graph (digraph) with vertex set V = {1, 2, . . . , d} and
weighted adjacency matrix B ∈ Rd×d, where bij represents
the weight of the edge from node j to i (j is then a parent
of i) and bij = 0 if there is no such edge. G may have self-
loops. Where needed we will represent undirected graphs by
a symmetric B. Especially relevant in this paper are directed
acyclic graphs (DAGs) G = (V,A) that do not have (directed)
cycles. In this case we assume V to be topologically sorted,
i.e., there is no edge from i to j when j < i. This way, A is
lower triangular with zeros on the diagonal and thus Ad = 0.

Graph signals x = (x1, . . . , xd)
T ∈ Rd associate a real

value xi with each vertex i.
Linear SEMs. DAGs are commonly used to capture causal

relationships [18] and associated data (or signals) are often
modeled with structural equation models (SEMs) [18, 19, 20].
The simplest, but often used are linear SEMs, which assume
that the value xi at node i is a linear combination of the values
at the parent nodes plus an additional contribution ci from
node i. Formally, this means

x = Ax+ c, c = (c1, . . . , cd)
T . (1)

Most prior work assumes c to be i.i.d. noise [19, 21, 22]. If
c is in addition Gaussian, then (1) can model any d-variate
Gaussian distribution for x [27] with a suitable A. But other
choices are possible as we assert below.

Equation (1) can be viewed as a recurrence that computes
x starting from the values at the sources (no parents). An
equivalent form rewrites (1) (using Ad = 0 [28]) as

x = (I−A)
−1

c =
(
I+A+A2 + ...+A(d−1)

)
c

= Wc. (2)

Thus a linear SEM is a linear transform that computes the
signal x from the inputs c at each node. The transform matrix
W captures the influence of a node with contribution ci to all
its descendants (not only the direct children). We call c the
causes of x in the linear SEM. Interestingly, c can be viewed
as a form of spectrum of the signal x with a suitable associated
notion of shift and convolution [26].

Few causes. In this paper we consider DAG signals x
with few causes following [28]1. This means only a few nodes
produce significant input values ci that percolate through the
network following (1) or (2) to produce x. Examples include
river pollution data for which only few polluting sites are re-
sponsible or gene expression data caused by only few activated
genes in the network. In practice, the sparsity assumption will
hold only approximately, so we allow for low magnitude noise
nc in the causes c. Further, the measurement of x will also be
subject to noise nx, so our model of a DAG signal will be

x = W (c+ nc) + nx. (3)
1Where they are called root causes.

In prior work, we have shown that (1) under mild assumptions,
DAGs can be learned from associated signals with few causes
[28, 29], and (2) DAG signals with few causes at unknown
locations can be learned from samples [26, 30].

3. TIME-SERIES GRAPH DATA AS A DAG

Our goal is to apply the prior models and work on linear SEMs
and associated methods of causal inference on DAGs to time-
series graph data. To do so we first follow [17] by unrolling in
time a graph to obtain a DAG and then we instantiate a linear
SEM on it. This can also be viewed as a structural vector
autoregression (SVAR) model [25] with time-lag p = 1 as the
data at time i+ 1 are obtained from data at time i. Doing so
allows us to port DAG learning techniques, and in particular
the assumption of few causes, to such data.

Time-series graph data as DAG. We consider a di-
graph (or graph) G = (V,B) with associated data vectors
x(1),x(2), . . . ,x(T ) produced at time steps t = 1, . . . , T .
We create a DAG G′ = (V ′,A) where V ′ consists of T repli-
cas V (1), . . . , V (T ) of V . Then, node j in V (t) is connected
to node i in V (t+1) as determined by bij . Self-loops become
connections between the same node in subsequent time steps.
Thus, G′ becomes a DAG with adjacency matrix

A = J⊗B =


0 0 ... 0 0
B 0 ... 0 0
... B

. . .
...

...
. . . 0

...
0 0 ... B 0

 , (4)

where J is the matrix with ones right below the main diagonal
and ⊗ is the Kronecker product of two matrices: G ⊗H =
[gi,jH]i,j .

Linear SEMs. Stacking the x(i) into a vector x ∈ RdT , a
linear SEM in the recursive form (1) becomes


x(1) = c(1),

x(2) = Bx(1) + c(2),
...

x(T ) = Bx(T − 1) + c(T ).

(5)

In words, after initializing x(1), each subsequent x(i+ 1) is
obtained from the previous x(i) as determined by B and the
input c(i) from the nodes at each time step.

To obtain the closed form in (2) as a transform of causes
we need the following lemma.

Lemma 3.1. The matrix W in (2) and (3) corresponding to



Fig. 1: Unrolling a digraph B in three time steps into DAG A.

the unrolled DAG A of the digraph B is given by

W = I+A+A2 + ...+A(T−1)

=



I 0 0 ... 0 0
B I 0 ... 0 0

B2 B I
. . .

...

B3 B2 B
. . . 0

...
...

...
. . .

. . . I 0
B(T−1) B(T−2) ... B2 B I


(6)

Proof. The power of the Kronecker product of two square
matrices is the Kronecker product of their respective powers
and thus

A = J⊗B ⇒ Ak = (J⊗B)
k
= Jk ⊗Bk.

The assertion now follows from the fact that Jk has ones on
the kth lower diagonal and zeros elsewhere.

Example. In Fig. 1 we illustrate the unrolling of a graph
(V,B) in three time steps into the DAG (V ′,A). A linear
SEM in the recursive form (1) becomes

x =

x(1)x(2)
x(3)

 , x =

0 0 0
B 0 0
0 B 0

x+ c. (7)

Time-series graph data are common in many real-world
scenarios, where B may be a graph or digraph and known
or not. Examples include daily temperature measurements
at fixed locations inside a country or pollution measurements
in a river network. We are interested in the situation that
the data follow a linear SEM on the unrolled DAG and the
assumption of few causes, i.e., c being (approximately sparse).
This means that the data are generated by few events at nodes
that propagate through time and space as determined by B to
produce x.

4. EXPERIMENTS

We first perform two synthetic experiments: learning a time-
series graph signal from samples and learning the graph from

Fig. 2: Average SNR of reconstructed signals. Signals x are
synthetic following (3) with 5% sparsity in the causes c on an
unrolled DAG with 20 · 50 = 1000 vertices.

time-series data assuming few causes. The third experiment
illustrates a possible real-world application using real data
from the Thames river network [31]. We use prior notation, in
particular (V ′,A) is the unrolled DAG for (V,B).

Synthetic: Learning signal from samples. We syntheti-
cally generate time-series graph data with few causes. First,
we construct a random Erdös-Renyi graph with d = 20 nodes,
assign random edge directions, assume self-loops so the un-
rolled DAG stays connected, to obtain 3d edges. Then we
assign uniform random weights from [−0.9,−0.1]∪ [0.1, 0.9]
to the edges. We unroll the graph into T = 50 time steps to
create the final DAG A of size dT = 1000. We then generate
the data matrix X of ten signals as columns with (3) assuming
an associated matrix of sparse causes C with uniform values in
[0, 1] with probability 5% and zero otherwise. So the nonzero
locations are random and unknown. Both associated spectral
and measurement noises Nc,Nx are zero-mean Gaussian with
standard deviation 0.01.

For each signal we choose K random samples. If ΦK is
the corresponding sampling operator we recover the signal
using Lasso regression:

x̂ = W · argmin
c

1

2K
∥ΦKx−ΦKWc∥22 + λ∥c∥1, (8)

where x is the original signal, ΦKx is the sampled signal, x̂
is the reconstructed signal, λ = 10−4 is the coefficient of the
sparsity regularizer, and W is as in (2).

For comparison, we also choose W as the Laplacian or
adjacency Fourier basis (of the underlying undirected graph)
as a baseline, which effectively assumes Fourier sparsity in
these domains.

Fig. 2 shows the average signal-to-noise ratio SNR of the
reconstructed signals (y-axis) for varying number of samples
K (x-axis). The method successfully learns signals with few
causes, and, as expected, outperforms the Laplacian and the
adjacency basis.

Synthetic: Learning the graph from data. We learn the
graph B from time-series data with few causes by applying
DAG learning on the unrolled A to then extract one block B.
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Fig. 3: SHD metric (lower is better) of the reconstructed graph
B. Left: varying the number d of nodes for T = 10 time steps
and n = 1000 signals. Right: varying the number n of data
vectors for d = 20 nodes and T = 10 time steps.

We build on the method in [28] but modify it to enforce
the special structure of A in (4). Namely, given the data
matrix X ∈ RdT×n with n signals as columns, we use gradient
descent to solve the following optimization problem:

Â = argmin
A∈RdT×dT

∥X−XA∥1 + λ∥A−PAQ∥2

s.t. h (A) = 0. (9)

The term ∥X−XA∥1 promotes sparsity in A and the re-
gularizer ∥A−PAQ∥2, with coefficient λ = 10−3, promotes
the blocks in the lower block-diagonal to be equal, as in (4).
This is done by choosing P and Q to perform a cyclic shift
on these blocks.2 The constraint h (A) = trace

(
eA⊙A

)
−

dT (⊙ is the entry-wise matrix product) is the continuous
acyclicity constraint proposed by [21]. After computing Â
the approximated undirected graph adjacency matrix B̂ is
extracted as the first (top left) block B in Â. This choice
worked empirically best in our experiments, which makes
sense since it affects the entire subsequent DAG data.

We compare against two types of prior work. First, the
methods [8], [9] to learn the graph B directly from the data,
and GL-3SR [10, 11]. Second, other methods that, like ours,
learn the DAG A, and then we extract B: NOTEARS [21],
GOLEM [22] and LiNGAM [19], which are among the state-
of-the-art methods for learning DAGs from linear SEM data.

We generate graphs as before but keep them undirected
(to apply the above prior graph learning methods), choosing
d = 20 nodes, average 3d edges, n = 1000 data vectors and
T = 10 time steps by default. The metric for comparing
is the average structural Hamming distance (SHD) over five
repetitions, i.e., the number of edge insertions and deletions
needed to convert B̂ to B (lower is better).

Fig. 3 shows the results for varying number d of nodes and
varying number of signals n. We conclude that our method
performs significantly better than the baselines which are obliv-
ious to the property of few causes.

2More precisely: P = (01 ⊕CT−1)⊗ Id, Q = (CT
T−1 ⊕ 01)⊗ Id.

C is the cyclic shift matrix and ⊕ the block-diagonal composition.

Fig. 4: Average SNR of reconstructed Thames signals. The
network has 13 sites unrolled into 49 time steps (weeks) to
obtain a DAG with 13 · 49 = 637 vertices.

4.1. Real-world experiment: Thames river network

We perform an experiment on data from the Thames river
network [31] to illustrate how our method could be applied in
a real-world problem. The Thames river network consists of
thirteen different sites along the river connected by directed
edges through the water flow. For seven years, roughly weekly
(49/year) measurements are available. We group these into
seven signals with d = 13, each unrolled with T = 49. The
signals measure the dissolved reactive silicon concentration in
[mg/L]. The graph G is known, but not the edge weights in B.

Seven is too few to learn B from the data. However, we
can learn the edge weights, and then use these weights to learn
the signals from samples, thus testing whether the assumption
of few causes may hold.

We learn the weights by modifying (9) to restrict A to only
contain weights in the entries corresponding to the true edges.
We do this by masking the weighted variable A with a mask
containing the edge locations. Once Â is obtained, we learn
the signals from random samples as before in (8). Fig. 4 shows
the average (over seven signals) SNR of the reconstructed
signals (y-axis) for varying number of samples K (x-axis).

Our method performs significantly better, especially for
small K, which implies that the data can be viewed as having
few causes in a linear SEM model.

5. CONCLUSION

We presented a novel way of analyzing time-series data on
graphs. The basic idea was to unroll the graph in time and
apply DAG learning techniques to the obtained DAG, whose
acyclicity is guaranteed due to the nature of time. In particular,
we focused on the case that the data are generated by few
causes, i.e., few inputs from nodes, in the sense of a linear
SEM model. In this setting we showed both how to learn
signals from samples and the graph from data, and gave a
prototypical application example with real-world data.
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