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ABSTRACT

We propose a novel definition of total variation (TV) specifi-
cally defined for directed acyclic graphs (DAGs). It is a gen-
eralization of the classical definition for discrete-time signals
(noting that discrete-time is a DAG) and obtained by invert-
ing an integration operator on DAGs, leveraging the theory
of Möbius inversion from combinatorics. We demonstrate the
performance of our Möbius TV against prior TV definitions
when used for denoising a set of real-world DAG signals.

Index Terms— Graph signal processing, directed acyclic
graphs, Möbius inversion, total variation denoising

1. INTRODUCTION

Graph signal processing (GSP) has gained significant atten-
tion in recent years. It generalizes key concepts of classical
signal processing (SP) to signals on graphs, including the no-
tions of Fourier transform, shift, filtering, frequency and total
variation [1]. Two related, but different GSP frameworks ex-
ist depending on the choice of variation or shift operator as ei-
ther the graph Laplacian [2] or the adjacency matrix as in [3],
which instantiates the general SP theory from [4] for graphs.

In this paper, we focus on the concept of total variation
(TV), which is a measure of signal smoothness and used to or-
der the Fourier basis from low to high frequencies. TV-based
methods are a driver for many applications, including signal
inpainting on graphs [5], graph clustering [6], classification,
ranking and link prediction on graphs [7], denoising [8], and
network flow problems [9].

Directed graphs. Most of the GSP work has focused on
undirected graphs, since the symmetry of the shift guarantees
the existence of an orthogonal eigen- (Fourier) basis and thus
many other fundamental SP concepts. A complete general-
ization of GSP to directed graphs is still an open problem [1,
Sec. III-A], [10] due to the general lack of a well-defined
Fourier basis [11]. To overcome this problem, several solu-
tions have been proposed by adapting the definition of shift
or TV [12–19]. Particularly challenging are directed acyclic
graphs (DAGs) discussed next.

Our contribution: Total variation for DAGs. DAGs
constitute an important subclass of directed graphs since they

underlie the modeling of causal structures and Bayesian net-
works [20–22]. However, in GSP they are, in a sense, the
worst case, since the spectrum collapses: all eigenvalues of
the adjacency matrix are zero and thus, for example, the TV
in [3] is undefined.

In this paper, we propose a novel form of TV specific for
DAGs. It generalizes the classical TV in discrete-time SP
(noting that the discrete-time graph is a DAG), and is obtained
as the inverse of an integration operator on DAGs. Doing
so leverages the theory of Möbius inversion from combina-
torics [23] and yields the so-called Möbius transform as the
TV operator. As a prototypical application example we per-
form TV denoising [8, 24] on a number of real-world DAG
signals. We compare our Möbius TV to prior notions of TV,
including those obtained by ignoring directions in the DAGs,
and show that it yields better results.

2. TOTAL VARIATION FOR GRAPHS

We provide background on GSP and total variation.
Graphs. We define a graph as G = (V, A) where V =

{v1, . . . , vn} is the set of vertices and A ∈ Rn×n its adja-
cency matrix. An element Aij in A is = 1 if there is an edge
from vj to vi and = 0 otherwise. A graph is undirected if A
is symmetric, and directed otherwise.

For undirected graphs, the degree deg(v) of a vertex v is
the number of its adjacent vertices. For directed graphs, we
distinguish between in-degree (the number of direct predeces-
sors) and out-degree (the number of direct successors).

For an undirected graph, the degree matrix is D =
diag(deg(v1), . . . ,deg(vn)), and the Laplacian is defined
as L = D − A. For directed graphs, we distinguish between
the in-degree and out-degree matrix (Din and Dout). We take
L = Din −A as the definition of directed Laplacian [13].

The undirected Laplacian can be written as L = B>B,
where B is the oriented incidence matrix. In B, each row
corresponds to an undirected edge, and each column to a ver-
tex. If the edge ei connects vj and vk with j < k, then
Bij = 1, Bik = −1, and Bi` = 0 otherwise.

A graph signal x is a column vector x = (x1, . . . , xn)> ∈
Rn, where xi denotes the value at vertex vi.

Total variation. In classical discrete-time SP total varia-
tion TV(x) =

∑
i|xi − xi−1| is a measure of signal smooth-IC

A
SS

P 
20

23
 - 

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 A

co
us

tic
s, 

Sp
ee

ch
 a

nd
 S

ig
na

l P
ro

ce
ss

in
g 

(I
C

A
SS

P)
 | 

97
8-

1-
72

81
-6

32
7-

7/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

A
SS

P4
93

57
.2

02
3.

10
09

54
35

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 15,2023 at 13:17:08 UTC from IEEE Xplore.  Restrictions apply. 



ness [25]. For a constant signal TV is zero. For graph signals
this may not hold, depending on the definition used as ex-
plained next.

TV for undirected graphs. Depending on the chosen
GSP framework, there are two basic definitions of graph TV.
[11] defines it as

TVA(x) =
∥∥∥(I − 1

|λmax|A
)
x
∥∥∥p
p
, (1)

where λmax is the largest magnitude eigenvalue of A. The
choice for p is usually 1 or 2. For constant signals, TVA is
generally not zero. [2] uses the Laplacian:

TV(x) =
∑

vi,vj adjacent

(xi − xj)2 = x>Lx = ‖Bx‖22. (2)

TV for directed graphs. For directed graphs, [11] uses
the same definition as in (1). For DAGs, |λmax| = 0 and
thus it is undefined. Instead, we later use the unnormalized
TVA(x) = ‖(I −A)x‖pp in our experiments.

Using the directed Laplacian, [13] proposes

TVL(x) = ‖Lx‖pp = ‖(Din −A)x‖pp. (3)

Several variants of the above have been proposed based on
different scalings or by enforcing positive differences (see
[14, Table I], [12], and also Table 1 later).

We note that the prior definitions of TV, including those
in (1), (2), (3), and most of their variants, have the form

TV(x) = ‖∆x‖pp, (4)

where ∆ is a chosen linear difference operator.

3. MÖBIUS TOTAL VARIATION FOR DAGS

In this section we introduce our novel Möbius TV for DAGs,
which generalizes the classical TV for discrete-time signals.
The basic idea is to define an integral operator on DAGs,
which is then inverted to obtain an associated difference op-
erator ∆ for use in (4).

DAGs and partial order. Let G = (V, A) be a DAG on
n vertices. G induces a partial order1 on V: v � u if and only
if v is a predecessor of u, i.e., there is a path from v to u in G.
We assume V to be ordered accordingly, i.e., vi � vj implies
i ≤ j. This way, A becomes lower triangular.

TV of a discrete-time signal. A discrete-time signal x =
(xi)i∈Z is defined over an infinite DAG with nodes i ∈ Z and
directed edges (i − 1, i) for all i ∈ Z. As mentioned already
above, the classical TV of x is defined as

TV(x) =
∑
i

|xi − xi−1| = ‖∆x‖1, (5)

1A partial order on set S is a binary relation� which satisfies three prop-
erties: 1. x � x for every x ∈ S (reflexivity); 2. x � y and y � x implies
x = y (antisymmetry); 3. x � y and y � z implies x � z (transitivity).

(a) Directed path

( 1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

)
(b) Integration operator

( 1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

)
(c) Difference operator

Fig. 1: Directed path on five vertices

where ∆ is a linear difference operator: (∆x)i = xi − xi−1.
The inverse of ∆ is the, also linear, integration operator Σ that
sums over all predecessor nodes:

(Σx)i =
∑
j≤i

xj . (6)

TV for DAGs. We generalize (6) to signals x on arbitrary
DAGs G = (V, A) by summing over all predecessors of a
node in G, i.e.,

(Zx)i =
∑
vj�vi

xj .

We write Z instead of Σ since it is known as zeta transform in
combinatorics [23]. Z is lower triangular and the adjacency
matrix of the so-called transitive-reflexive closure of G, i.e.,
Zij = 1 if vj � vi and = 0 else.

Inverting Z yields the associated difference operator ∆ =
M = Z−1, which is known as Möbius transform.2 A closed
form for M is provided in [23]. Namely Mij = µ(vj , vi),
where µ is the Möbius function defined recursively as

µ(vi, vi) = 1, for all vi ∈ V,

µ(vi, vj) = −
∑

vi�vk≺vj

µ(vi, vk), for vi 6= vj .

Intuitively, Mxi captures the incremental change of xi, given
the values of the predecessors of vi in G, generalizing (5). As
a result we obtain our

Möbius TV : TVM (x) = ‖Mx‖pp. (7)

For p = 2 this definition suggests, in analogy to (2), the
eigenbasis of M>M as associated orthogonal Fourier basis.

Möbius TV for a directed path. As a first example, we
consider the simplest DAG: a finite directed path. The integra-
tion and difference operators Z and M are shown in Figure 1.
In this case, M = I − A, the unnormalized ∆ in (1). With
p = 1 we get

TVM (x) = ‖Mx‖1 = |x1|+
n∑
i=2

|xi − xi−1|, (8)

We notice two undesirable properties: TVM is not zero for
constant signals, and, in particular, the value at the source
(node with in-degree 0) v1 occurs undifferentiated. We pro-
pose two solutions for arbitrary DAGs next.

2Interestingly, and different from this paper, M also admits an interpreta-
tion as a Fourier transform [26].
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(a) DAG G

( 0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 1 0 0
0 0 1 1 0

)
(b) A

( 1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
1 1 1 1 0
1 1 1 1 1

)
(c) Z( 1 0 0 0 0

0 1 0 0 0
−1 0 1 0 0
0−1−1 1 0
0 0 0−1 1

)
(d) M = Z−1

( 0 0 0 0 0
0 0 0 0 0
−1 0 1 0 0
0−1−1 2 0
0 0 0−1 1

)
(e) ML

( 0.8−0.2−0.2−0.2−0.2
−0.2 0.8−0.2−0.2−0.2
−1 0 1 0 0
0.2−0.8−0.8 1.2 0.2
0 0 0 −1 1

)
(f) M̃

Fig. 2: DAG with five vertices, adjacency matrix, integration
operator, and the proposed difference operators

Möbius Laplacian. Our first solution is similar to a
Laplacian: we subtract the row sums from the diagonal ele-
ments in M :

ML = M −DM ,

where DM = diag
(∑n

j=1M1j , . . . ,
∑n
j=1Mnj

)
. The cor-

responding TV is then TVML
(x) = ‖MLx‖pp, for which con-

stant signals have TV zero. In particular, this definition takes
out sources. Indeed, for the directed path and p = 1 we get

TVML
(x) =

n∑
i=2

|xi − xi−1|,

which, in this case, coincides with (3).
Modified Möbius transform. Our second proposal en-

sures zero-sum rows in the Möbius matrix by subtracting the
corresponding row sum scaled by 1/n from each element in
the matrix:

M̃ = M − D̃M , (D̃M )ij =
1

n

n∑
j=1

Mij .

The corresponding TV is TV
M̃

(x) = ‖M̃x‖pp and ensures
that constant signals have TV zero.

Example. Fig. 2 shows an example DAG and our three
proposed difference operators. Note that none of them corre-
sponds to a prior difference operator.

4. EXPERIMENTS

We evaluate our proposed Möbius TVs by performing classi-
cal total variation denoising [24], ported to graphs as in [8],
of DAG signals. We compare against various previous notions
of TV.

TV operators. We consider DAGs G = (V, A) and over-
all twelve TV operators of the form TV(x) = ‖∆x‖22, with
∆ shown in Table 1. The directed operators include our three
versions of Möbius TV. The undirected operators are obtained

by ignoring the directions in G, i.e., setting A = A+A>, and
use the TVs from (1), (2), and variants from [14, Table I].

TV denoising. Given a signal x on G, we add uncorre-
lated zero-mean Gaussian noise e: y = x + e, considering
signal-to-noise ratios (SNRs) of 5 and 15. TV denoising is
then done by solving the following minimization problem:

x̃ = arg min
x

(
‖x− y‖22 + αTV(x)

)
(9)

=
(
I + α ·∆>∆

)−1
y, (10)

where x̃ is the denoised signal and the parameter α balances
between the reconstruction error and the smoothness accord-
ing to the chosen TV. The choice of squared 2-norm in TV
ensures that we have the closed-form solution in (10).

Finding the optimal value of α is non-trivial [27, 28], so
we consider a relevant range in our experiments.

Graphs and data. In synthetic experiments with smooth
signals (w.r.t. the Möbius TVs) denoising with our Möbius
TVs performed best by construction. Thus, we focused on
real-world data to assess the potential of our TVs more real-
istically.

We consider three DAGs and associated data that we
could find for our experiments, considering four different
DAG signals in each case. The first one is the gene causal
network for Arabidopsis thaliana plant (Arth150) [29] with
107 nodes. Nodes represent genes, and directed edges are
determined by a complex statistical method described in [30],
which creates a DAG. The signals assign to each gene the
degree of expression in a cell.

The second one is the dependency Bayesian network for
the indica rice population (Magic-irri) [29] with 64 nodes.
Nodes represent single nucleotide polymorphisms and phe-
notypic traits, and edges represent directed stochastic depen-
dencies between them. The network is a DAG, and the signals
are allele frequencies of single nucleotide polymorphisms and
phenotypic trait measurements [31].

The third one is a network of the river Thames and its
major tributaries [32], where measurements are taken at 13
different sites once a week. Nodes represent pairs (site, time
point); edges connect adjacent sites at the same time point
directed as the water flows, and a site with itself at consecutive
time points. The resulting graph is a DAG, and the signals
represent mean daily flow measured once a week for the years
2013–2016 (four signals).

Since for the Thames river network only four signals were
available, we decided to use the same number for the other
networks for consistency. However, for Arth150 and Magic-
irri network, we also considered 100 signals and obtained
qualitatively similar results.

Results. We show our results in Fig. 4 with the legend
provided in Fig. 3. For each DAG, there are two plots: one
for the low SNR of 5, and one for the high SNR of 15. The
x-axis represents the chosen parameter α, and the y-axis rep-
resents SNR after denoising. We vary the scale on the x- and
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Directed operators ∆ Undirected operators ∆

Directed shift: I −A Undirected shift: I − A
|λmax|

Directed Laplacian: Din −A Undirected Laplacian: D −A

Normalized dir. Laplacian:1 I −D−1
in A Normalized undirected Laplacian: I −D

− 1
2AD

− 1
2

Möbius matrix: M Left norm. undirected Laplacian: I −D
−1

A

Möbius Laplacian: ML Oriented incidence matrix: B

Modified Möbius matrix: M̃ Norm. oriented incidence matrix: BD
− 1

2

1 We add self-loops to all sources of the graph to avoid dividing by zero.

Table 1: Difference operators used for denoising with TV(x) = ‖∆x‖22. Fig. 3: Legend for Fig. 4

y-axis, to focus on the range of interest for α. Undirected TVs
correspond to dashed lines and our Möbius TVs are shown in
different red/orange tones. The baseline SNR of y is a hor-
izontal black line. Shaded areas around lines represent the
standard deviation over the four signals.

Discussion. First we note that for the chosen data and
TV operators some denoising is achieved in most cases for a
suitable α, with the exception of Figure 4b (right), where all
methods fail. For the other five, one of our novel Möbius TVs
performs best and also offers better robustness with respect
to the choice of α. Further, ignoring directions (dashed lines)
yields significantly inferior results in most cases.

For signals on Arth150 network (Figure 4a), the property
that constant signals have zero TV appears to be important,
since both Möbius Laplacian and modified Möbius yield sig-
nificantly better denoising than the standard Möbius TV.

Denoising based on (9) can only work if the original sig-
nal is smooth w.r.t. the chosen TV. Indeed, we confirmed by
inspecting the associated spectra that signals on the Magic-
irri network are not low-frequency (but other DAG signals
are; not shown due to lack of space), and it is the likely expla-
nation for the failure on SNR = 15. For the Möbius TVs we
computed the spectra as explained above (7).

Our Möbius TVs perform particularly well on the Thames
network (Figure 4c). The directionality through the water
flow and the measurement along time makes it an obvious
DAG and gives hope that other applications that measure
graph signals along discrete time steps could benefit as well.
Overall, the choice of a proper TV matters but how to do so
remains an open problem and is likely application-dependent.

5. CONCLUSION

DAGs are a particularly important class of directed graphs
since they can model causal structures and processes as well
as graph data measured along time. Prior GSP does not in-
stantiate well for DAGs because of the lack of a well-defined
Fourier basis and associated concepts. In this paper we pro-
posed a novel form of total variation that is not based on any
prior GSP variant. The key idea was to reinterpret the clas-
sical Möbius transform from combinatorics as a difference

operator, which, theoretically pleasing, generalizes the classi-
cal TV definition for the discrete-time DAG. Our experiments
with TV denoising demonstrated the practical viability of our
Möbius TV and invite further research to better understand its
properties and to develop further applications.

(a) Arth150 network, SNR = 5 (left), SNR = 15 (right)

(b) Magic-irri network, SNR = 5 (left), SNR = 15 (right)

(c) Thames network, SNR = 5 (left), SNR = 15 (right)

Fig. 4: TV denoising on three classes of DAG data with
twelve different TV operators. The scales on the axes are
different.
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“Signal denoising on graphs via graph filtering,” in IEEE
Global Conf. Signal Inf. Process., 2014, pp. 872–876.

[9] A. Jung, A. O., Hero III, A. C. Mara, S. Jahromi,
A. Heimowitz, and Y. C. Eldar, “Semi-supervised learning
in network-structured data via total variation minimization,”
IEEE Trans. Signal Process., vol. 67, no. 24, pp. 6256–6269,
2019.

[10] A. G. Marques, S. Segarra, and G. Mateos, “Signal processing
on directed graphs: The role of edge directionality when pro-
cessing and learning from network data,” IEEE Signal Process.
Mag., vol. 37, no. 6, pp. 99–116, 2020.

[11] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing
on graphs: Frequency analysis,” IEEE Trans. Signal Process.,
vol. 62, no. 12, pp. 3042–3054, 2014.

[12] R. Shafipour, A. Khodabakhsh, G. Mateos, and E. Nikolova,
“A directed graph Fourier transform with spread frequency
components,” IEEE Trans. Signal Process., vol. 67, no. 4, pp.
946–960, 2019.

[13] R. Singh, A. Chakraborty, and B. S. Manoj, “Graph Fourier
transform based on directed Laplacian,” in Int. Conf. Signal
Process. Commun., 2016, pp. 1–5.

[14] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set
selection for bandlimited graph signals using graph spectral
proxies,” IEEE Trans. Signal Process., vol. 64, no. 14, pp.
3775–3789, 2016.
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