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Abstract—Word embeddings have gained increasing popularity
in the recent years due to the Word2vec library and its extension
fastText that uses subword information. In this paper, we aim
at improving the execution speed of fastText training on homo-
geneous multi- and manycore CPUs while maintaining accuracy.
We present a novel open-source implementation that flexibly
incorporates various algorithmic variants including negative
sample sharing, batched updates, and a byte-pair encoding-based
alternative for subword units. We build these novel variants
over a fastText implementation that we carefully optimized for
the architecture, memory hierarchy, and parallelism of current
manycore CPUs. Our experiments on three languages demon-
strate 3–20× speed-up in training time at competitive semantic
and syntactic accuracy.

Index Terms—machine learning, natural language processing,
parallel computing, performance, word2vec, fasttext

I. INTRODUCTION

Word embeddings are numerical vector representations of

words that capture contextual relationships between words

through vector operations. They have become a standard input

representation and a common first step in pipelines for the

majority of natural language processing (NLP) tasks, bene-

fiting, e.g., classification [1], [2] or machine translation [3],

[4]. Word embeddings have a long history [5]–[7], but have

received much attention in recent years due to their efficient

computation with word2vec [8].

More recently, state-of-the-art results on many language

understanding tasks were achieved by deep transformer archi-

tectures such as BERT [9], which however are very compute

intensive both at training and inference time, even with pre-

trained models and reduced parameter space. Thus, simpler

and more lightweight static word embeddings such as fast-

Text [10] are still widely used, due to their fast execution

(both training and inference are an order of magnitude faster

than BERT [11]), comparable or better results for particular

tasks [12], [13], and the ability to produce a single vector per

word, which helps in information retrieval with interpretability

and search index construction [13].

We make the following contributions. We present algo-

rithmic and code optimization techniques to improve the

training time for word2vec and fastText embeddings on

modern general-purpose multicore and manycore computers.

We present polyalgorithmic open-source implementations of

word2vec and fastText that are carefully optimized for the

architecture, memory hierarchy, and parallelism of current

manycore CPUs. The implementation encapsulates a number

of algorithmic variants including dynamic hidden layer up-

dates, batched updates, and subword units based on the byte-

pair encoding approach. Our extensive evaluation on three

languages shows that the best combinations of optimizations

speed up training time by about 3–20 times while maintaining

the accuracy of selected NLP tasks. We also compare against

the state-of-the-art GPU implementation demonstrating an up

to 3.75 times higher speedup over corresponding baselines.

Additionally, we provide a performance analysis of the most

performance-critical parts of word2vec and fastText. Our

contribution is thus at the intersection of machine learning

and HPC, and demonstrated by the high speedups, while

maintaining accuracy, that we obtain over the current state-

of-the-art.

II. LEARNING WORD EMBEDDINGS

We provide necessary background on word embeddings and

the state-of-the-art word embedding algorithms we aim to

accelerate: word2vec and fastText.

Word embeddings. A word embedding is a mapping φ
from textual representations of words as character strings

to numerical vectors in R
d. Typically, d = 100 or 300.

Computing a useful embedding is an optimization problem

which aims to minimize the distance in R
d between words with

similar meaning while maintaining larger distances between

unrelated words. For example, the words Norway and Sweden
are expected to be close to each other, but distant from the

word panda. Further, with the popular techniques discussed

below relations between words are often captured by algebraic

relations between the word vectors. For example, this means

that a sentence “A is to B as C is to D” may be expressed

as φ(B)− φ(A) + φ(C) ≈ φ(D), where ≈ approximates the

answer by finding the word D that is closest to the exact

solution.

Both training algorithms word2vec and fastText compute

a word embedding in an unsupervised way: they take a text

corpus as an input, and produce a vector embedding from a

vocabulary of size V extracted from the training corpus.

Word2vec. Word2vec is built upon a simple bilinear regres-

sion model trained on word co-occurrence. Given a (current)

word in a sentence, its objective is to maximize the likelihood

of predicting surrounding (context) words. To achieve this,

the model is trained to increase the probability of predicting
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particular words if they appear close to a given current word

in the training text corpus. A popular variant also decreases

the probability of predicting words that do not appear close

to the current word (negative sampling [8], [14]). Each word

w in the vocabulary of size V is represented as a source

ws by one row in the V × d input matrix Min of word

embeddings φ(ws), and each word is represented as a target

wt by one row in the V × d output matrix Mout containing

word vectors, that are used to calculate the training objective

function (both matrices are indexed by words w). The goal is

to maximize the inner products (i.e., minimize the difference)

of real pairs of source word embeddings Min(ws) with the

target word vectors Min(wt). With negative sampling, the

algorithm also maximizes the difference between the source

word embeddings and the target word vectors of words wt′

picked randomly out of the source’s context.

The algorithm starts by initializing Min randomly and Mout

to zero. Next, it processes the designated text corpus in a

streaming fashion, performing multiple iterations. In each

iteration, a current word wi is processed together with its sur-

rounding context words {wi−C , ..., wi−1}, {wi+1, ..., wi+C},
where C is the range of the context window. There are two

modes of operation when training the model corresponding to

the following prediction tasks:

• Skip-gram (SG): predict target context words using the

current word wi as the source.

• CBOW: predict the target current word wi using context

words as the source.

Each iteration consists of constructing a hidden layer h from

Min(ws), and performing a series of loss function updates on

one positive and n negative samples in Mout. In practice, each

such update is a step of stochastic gradient descent (SGD),

maximizing the inner product between Min(ws) and Mout(wt),
and minimizing the dot products between Min(ws) and the

negative sample vectors Mout(wt′). During the n + 1 loss

function updates, the algorithm calculates a gradient g which

is added to Min(ws) at the end of the iteration. In skip-gram,

these iterations are performed for each pair (current word,

context word) as source and target separately, while in CBOW,

all context word embeddings are averaged into h as source,

and each current word is processed as target by a single update.

SGD is performed in parallel with p threads by splitting

the training corpus into p parts and processing them asyn-

chronously (“Hogwild” approach [15]). The final embedding

of each word is its corresponding row in Min. Mout is discarded

at the end of training.

Another variant of word2vec replaces negative sampling

with the so-called hierarchical softmax. As our experiments

are focused on negative sampling, we will not discuss this

approach, but only note the compatibility with our work where

applicable.

More details follow in the description of fastText.

FastText. Word2vec is not designed to capture the simi-

larities between words based on constituting morphemes (the

smallest part of words that carry a meaning), i.e., the words

escalation and escalate are close in meaning and share

· · ·
hash(’<bro’)

· · ·
’fox’

’brown’

’dog’

’quick’

’jumps’

’a’

Min

d

a

quick

brown

fox

jumps

over

· · ·

· · ·
’fox’

’brown’

’dog’

’quick’

’jumps’

’a’

Mout

d

Fig. 1: Representation of source and target words in the input

Min and output Mout matrix in fastText (skip-gram). The

words in the corpus are indices of the corresponding rows

in Min and Mout.

the morpheme escalat. The idea of fastText is to learn an

embedding that captures this syntactic information by also

utilizing subwords shared by different words. This becomes

critical in morphologically rich languages such as Russian, or

languages rich in word compounds, such as German.

FastText [10] modifies word2vec by utilizing subwords of

source words during the training. A typical run of fastText

uses subwords of lengths k = 3 . . . 6, using delimiters 〈, 〉 to

represent the boundaries. For example, for the word escalate
and k = 3 the subwords are: 〈es, esc, sca, . . ., ate, te〉. In this

case, the words escalation and escalate share the subwords

〈es, esc, . . ., lat. FastText creates word representations by

averaging their subwords, causing these two word vectors

to be averaged from a range of shared subwords and, in

consequence, to be close in the vector space.

In fastText, the embeddings Min are extended to contain

rows representing both entire words as well as hashes of all

their subwords (in particular, two different words can share

the same row in Min, either because of their shared subwords,

or due to the hash conflicts). Additionally, the representation

of the entire word is added to the set of its subwords. The

algorithm builds the hidden layer h by averaging vectors in

Min representing the source word’s subwords. The final vector

embedding for each word is also obtained by averaging these

representations. Mout remains unchanged. Fig. 1 shows an

example of how the word vectors are stored and accessed.

A single update is described in Alg. 1. The algorithm can

be split into the following high-level steps (σ is the sigmoid

function, l is the learning rate of gradient descent):

Lines 1–5 average the source word and corresponding

subword vectors Min(ws) to obtain the hidden layer h. Zero

the gradient g.

Lines 6–14: For the target word wt (positive sample),

compute positive score α = l(1− σ(h ·Mout(wt))) reflecting

similarity between 0 and the row Mout(wt). Update the target

row Mout(wt)+ = αh, and build gradient g+ = αMout(wt) as

a backpropagation step. Subsequently, pick n random words
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Algorithm 1: A single iteration of the original fast-

Text algorithm. In skip-gram, it is performed on each

current-context word pair (as source-target). In CBOW,

all context words are used as source words at the same

time.
Data: source word(s) ws, target word wt, source word subwords

sw(ws) learning rate l, number of negative samples n
1 if skip-gram then // Initialize.
2 h =

Min(ws)+
∑

z∈sw(ws) Min(z)

count(sw(ws))+1

// Average vectors of the source
3 else if CBOW then // word(s) and their subwords

4 h =

∑
s (Min(ws)+

∑
z∈sw(ws) Min(z))

∑
s (count(sw(ws))+1)

// to obtain the hidden layer.
5 g = 0 // Reset the gradient.

// Update the target word.
6 α = l(1− σ(h ·Mout(wt))) // Compute positive score reflecting

// similarity between h and the row
// Mout(wt) representing wt.

7 g = g + α ·Mout(wt) // Build the gradient.
8 Mout(wt) = Mout(wt) + α · h // Update the target word.
9 for t′ ← 1 to n do // Update negative samples.

10 pick a random wt′ �= wt // Pick a random negative sample.
11 α = l(0− σ(h ·Mout(wt′ ))))

// Compute negative score.
12 g = g + α ·Mout(wt′ )) // Build the gradient.
13 Mout(wt′ )) = Mout(wt′ )) + α · h

// Update the target word.
14 end
15 if skip-gram then // Update the source rows(s).
16 Min(ws) = Min(ws) + g // The difference between rows in
17 foreach z ∈ sw(ws) do // Min(ws) and Mout corresponding
18 Min(z) = Min(z) + g
19 end
20 else if CBOW then // to positive and negative samples
21 foreach ws do // drops and increases respectively.
22 Min(ws) = Min(ws) + g
23 foreach z ∈ sw(ws) do
24 Min(z) = Min(z) + g
25 end
26 end

from outside the context (negative samples) and one by one,

perform analogous update while setting each as a target word

wt′ . For negative samples, the score should be negative, thus

it is calculated as: α = l(0 − σ(h · Mout(wt′))). Update

Mout(wt′)) and g accordingly for each negative sample.

Lines 15–26: Update the source row(s) Min(ws)+ = g
corresponding to the source word(s) ws and their subwords.

As a result, the difference between rows in Min(ws) and

Mout which correspond to positive samples is reduced, and the

difference between rows in Mout which correspond to negative

samples is increased.

Related work. FastText has been implemented as a part of

the popular Gensim library [16] using Cython and a standard

BLAS library (e.g., Intel MKL) for algebraic operations. In our

experiments we found the code memory-expensive and slow:

training 5 epochs on a 1 GB English Wikipedia dump with

24 threads took approximately 11 hours on a Knights Landing

CPU, about 10 times slower than the original fastText when

trained without the use of KNL’s fast MCDRAM memory.

Therefore, we use the original fastText code [17] as the

baseline in all our experiments.

For skip-gram with negative sampling, pWord2Vec [18]

transforms the “Hogwild” approach into “Hogbatch,” by per-

forming updates on multiple context words at once. We

employ similar techniques. The work by Rengasamy et al. [19]

extends this approach by context combining, where multiple

contexts can share a set of negative samples and be updated all

at once. We do not adapt this approach as it requires careful

preprocessing rewarded by only a relatively small speedup.

Word2vec and fastText have been also implemented for

GPU clusters. BlazingText [20] tackles the problem of effi-

cient batch size and synchronization for multiple GPUs and

achieves execution time on a single GPU comparable to a

16-threaded CPU fastText baseline. The work by Bae and

Yi [21] reports up to 11× speedup of word2vec with negative

sampling run on a K20 GPU over the single-threaded CPU

word2vec, but only up to 1.6× speedup over a 12-threaded

CPU run. We further improve the CPU implementation to

obtain superior speedups. Word2vec and fastText are memory-

intensive algorithms with fine-grained parallelism limited by

the relatively small vectors typically used in the computations.

These characteristics severely limit the potential advantages

of GPU over CPU. The low GPU performance has also been

reported by practitioners [22].

Li et al. [23] discuss a distributed version for many GPUs

aiming at the reduction of write conflicts in updates. Similarly

(and independently), we made attempts at pre-scheduling a list

of current-context word updates, but we found the overhead

of this preprocessing prohibitive. Nonetheless, our algorithmic

variants could be leveraged in a distributed setting.

Another popular word embedding model is GloVe [24].

While the Authors claim superiority over word2vec, a more

thorough evaluation ( [25], [26]) shows that there is no clear

winner, as the results vary depending on the training cor-

pus, evaluation task, and hyperparameters used. The standard

GloVe does not scale well for large vocabularies, and lacks

the information on word morphology provided by fastText.

The latter can be mitigated by replacing the words in the

vocabulary with their BPE tokens [27]. Since GloVe is based

on a completely different algorithmic structure (creation and

reduction of a global word co-occurrence matrix), there is no

direct way to apply our code optimizations and variants.

III. OPTIMIZATION TECHNIQUES AND ALGORITHMIC

VARIANTS

The goal of this section is to identify the performance-

critical parts of the algorithm, and introduce a variety of

techniques to speed-up the execution, either by reducing the

slowdown incurred by bottlenecks, or by diminishing the

amount of computation necessary using algorithmic variants.

To improve the training time, we first break down the updates

into linear algebraic operations, and then identify the most

expensive computations.

Assume that the source word(s) have a total of m subwords

(including the entire word) and that we use n negative samples

per target word. Additionally, assume that the accumulators of

sums and dot products are initialized with zero. By the number
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of reads and writes, we denote the number of 4-byte floating-

point numbers read by and written to the arrays. Then each

update comprises:

• Constructing h: a sum of m rows from Min of length

d, followed by a division by a scalar m (line 2 or 4)

yielding d(m + 1) operations. In the original code, each

vector addition is executed separately, followed by a single

division, leading to d(2m+ 1) reads and d(m+ 1) writes.

• Loss calculation: n + 1 dot products of h and the selected

rows of Mout, each followed by 2 vector scale-add operations

on the rows of Mout, gradient g, and the hidden vector h
(lines 6–8, 11–13). 6d(n+ 1) flops in total. In the original

code, this yields 6d(n+ 1) reads and 2d(n+ 1) writes.

• Gradient update: m vector additions of g to the relevant rows

of Min (lines 16–19 or 21–26), yielding dm operations. In

the original code, this involves 2dm reads, and dm writes.

We obtain d(2m + 6n + 7) operations per update, excluding

a few scalar operations, d(3m+6n+6) total array reads and

d(2m + 2n + 2) total writes. Thus we have low operational

intensity, which means reducing memory movements is the key

to speedup. The entire algorithm consists of S · E updates,

where S is the size of the corpus (after preprocessing as

described in [10]) and E is the number of epochs. To compute

the total number of operations in the algorithm, one has to

know the average number of subwords which varies for every

processed word. By inspecting the vocabularies of selected

languages, we observe that the number of subwords in words

varies between languages, e. g., for English and the default

hyperparameters, most words fit between 7 and 55 subwords.

The number of subwords is usually large, therefore we assume

that in a typical case, m� n.

In skip-gram, h is built only from a single current word

vector, while in CBOW, it is constructed from all context word

vectors. The loss function, in contrast, is computed once per

each current-context word pair in skip-gram, while in CBOW,

the loss is computed using the entire context. Empirically,

for CBOW, the construction of h and the gradient update

consumes most of the execution time, while for skip-gram,

these operations take roughly the same amount of time as the

loss function calculation (assuming the default parameter of

n = 5). All operations listed above are memory-intensive and

therefore memory bound: thus, the best approach to optimize

them is by reducing memory movement and avoiding unneces-

sary updates. It is further supported by our observations during

the tests on isolated sections of the code.

To speed up the training, we first perform a number of

code performance optimizations and then various algorith-

mic modifications compared to the original fastText. Some

modifications depend on each other as illustrated in Fig. 2.

Some, but not all, techniques apply to both modes of op-

eration. All our improvements build on code opt which is

a CPU-specific optimization of the original fastText code.

For skip-gram, we consider a batch variant and negative

sharing across the context (NS CT). For CBOW, we consider

keeping track of the values in the hidden layer h and updating

them dynamically rather than building this layer from scratch

original

code opt

batch

NS CT

no subword BPE h

(a) Skip-gram (SG)

original

code opt

NS s DH

DHF

DHF NS s

DH NS s

no subword BPE h

(b) CBOW

Fig. 2: Dependency between our code and algorithmic variants

of skip-gram and CBOW. The experiments for the “NS”

variants (no box frames) are not included in this paper due

to inferior experimental accuracy.

in each iteration (DH: variable context window size, DHF:

fixed context window size). We consider combinations of this

technique with negative sharing involving different number

s of positive samples that the negative samples are shared

between (NS s). Additionally, for both CBOW and skip-gram,

we test no subword where we remove the subwords from

code opt, making it equivalent to optimized word2vec, and

BPE h, where we replace samples with BPE tokens obtained

from a pre-trained token set of size h.

All our variants use the Hogwild-style asynchronous updates

and parallelization scheme as the original word2vec and fast-

Text implementations. We describe the effects of asynchronous

updates on our optimizations wherever relevant.

We next discuss these variants, referring to Alg. 1.

Code performance optimizations (code opt). For efficient

execution, we explicitly vectorize matrix and vector operations

using AVX-512 intrinsics. We employ multiple accumulators

in aggregation (sum and dot product) to increases ILP. Addi-

tionally, we add zero padding to each matrix row, such that

the actual length of each row is divisible by 16. In a 4-byte

floating point representation, 16 is both the length of an AVX-

512 vector, and the number of elements in a single cache block.

This makes it possible to utilize fully the vector parallelism,

and align AVX vectors in cache.

Additionally, we block and merge operations involving mul-

tiple reads from the same location in memory, like averaging

the rows of Min or subsequently reading from and writing to

Mout. Due to the typically short vector length, the processed

data usually remains within the L1 cache. Nevertheless, block-

ing reduces the number of loads from cache for array accesses.

During the creation of the hidden layer h (line 2 or 4), we

reduce the number of array accesses such that each element
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of h is stored only once during summing up the vector

representations of subwords. This improves the original code,

which performs a separate store for each subword.

To speed up the loss function computation, we vectorize the

dot product (lines 6, 11) with the use of eight accumulators to

increase instruction-level parallelism without too much register

pressure. We merge the update of the gradient g and the

relevant rows of Mout (lines 7–8, 12–13) to avoid multiple

reads from the latter. We still call the loss function once for

each wt and wt′ separately, as the opposite approach had a

negative impact on the convergence.

Similar to the creation of h, we improve the update of

Min(ws) with g (line 16 or 21–22) by reading each element

of g only once for all words and subwords ws.

In summary, we reduce the amount of array reads and writes

as follows. During the creation of the hidden layer, we reduce

the number of writes to d (including padding). During the

loss update, we reduce the number of reads to 5d(n+1), and

during the gradient update, we reduce the number of reads to

d(m+1). This yields d(2m+5n+6) reads and d(m+2n+
3) writes. This increases the operational intensity and yields

significant speedups when paired with careful vectorization

(see Section IV).

The reduction of reads and writes is additionally expected to

decrease the number of read and write conflicts on Mout in the

asynchronous parallel scheme we use, at a cost of negligible

delays between reading and storing the data.

The optimizations in the version code opt are used in all

algorithmic variants discussed next. Note that these optimiza-

tions can also be applied to other regularization schemes such

as the hierarchical softmax used in the original word2vec [8].

No subwords (no subword). The experiments in Sec-

tion IV show that it can sometimes be useful to train word em-

beddings without any subword information. We provide a code

variant which disables subwords, but applies all optimizations

discussed above. It is algorithmically equivalent to word2vec

with negative sampling. In Alg. 1, the set subwords sw(ws)
in lines 1–4 and 15–26 thus is empty and does not need not

be processed. While this is expected to improve the training

time, especially for CBOW which dedicated a large part of its

runtime to averaging and updating subword representations,

the information on the word morphology becomes scarce.

We will later see that the word embeddings trained without

subword information do not perform well when used for

syntactic tasks. On the other hand, the training then focuses

on semantic information which is reflected in higher semantic

quality of these embeddings. From the complexity point of

view, for skip-gram it now always holds that m = 1, while

for CBOW, m is equal to the number of words in the context.

Minibatching (batch for SG). For skip-gram, we imple-

ment a form of minibatching of the target words for each

source word. Rather than following pWord2Vec [18], which

merges all Min(ws) rows in a minibatch into a matrix, we

follow the original fastText’s approach hitherto only applied to

CBOW, which simply averages all these rows. The advantage

of our minibatching over the original fastText skip-gram is

being able to execute a single update for each context window

of the current word wi, rather than per each current-context

word pair. This means that h and the relevant rows of the

input matrix Min are updated only once per each current

word, independent of context window size. Lines 2 and 16

are now executed only once per context window, in a similar

fashion as in lines 4 and 21–22 respectively. This creates

an additional delay between reading and writing a word’s

subword representations increasing the possibility of write

conflicts, but our experiments later show that the accuracy

remains nearly unaffected. Minibatching can bring significant

speed improvements to subword-based training due to the

relatively high cost of building h and updating all subword

representations. As mentioned, in fastText CBOW, this form

of batching is already a part of its algorithmic structure.

Minibatching reduces the number of operations and data

movement in operations requiring reading and writing to Min,

i.e., creating h and updating the relevant rows of Min with the

gradient g. The average number of updates per context window

in skip-gram is C + 1, the average of picking randomly from

{2, . . . , 2C}, where C is the context window range. Thus the

average flop count now is d( 2m+1
C+1 + 6n+ 6). The number of

reads drops to d( 2m+1
C+1 + 5n + 5), and the number of writes

drops to d(m+1
C+1 + 2n+ 2).

Negative sharing (NS CT and NS s). We implement

negative sharing proposed in pWord2Vec [18], but adapted for

and built over SG batch and the natural batching of fastText

CBOW. For skip-gram, we share negative samples among

all words in the entire context window of wi (NS CT). For

CBOW, we share negative samples for s consecutive current

words wi (NS s). In our implementation, s is a hyperparame-

ter chosen by the user. Thus, line 10 is executed only n times

every sth update. Despite improvements in execution time, NS

yields inferior accuracy. Therefore, we do not report its results

in this paper.

Dynamic hidden layer update (DH). CBOW spends a

large portion of its execution time building h and updating

relevant rows of Min for each subsequent current word wi and

its context window. Therefore, we opt for adding and removing

subwords only as their words move in and out of the context

window as the algorithm processes the training text. After each

shift of the context window, we update the rows of Min for all

removed subwords, readjust to the gradient g, and add new

subwords to h. Thus, rather than performing the entire sum in

line 4, the data is processed in five steps. Let u be the expected

number of words falling out or into the context window, x the

number of embeddings that remain inside the context window

after a particular shift, and m̄ the average number of subwords

in a word. Then the algorithm proceeds as: 1) Denormalize

h: multiply h by the previous number of subwords that it

comprises (d flops). 2) Update Min for subwords falling out

of the context window (udm̄ flops). 3) Subtract embeddings

of subwords falling out of the context window from h (udm̄
flops). 4) Readjust to gradient g: h = h + xg (2d flops).

5) Add vectors of subwords falling into the context window
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to h (udm̄ flops). 6) Normalize h: divide h by the new number

of subwords (d flops).

Thus, during each update, the algorithm performs d(3um̄+
4) flops, with the proportional number of memory reads

and writes (2udm̄ reads and udm̄ writes, discarding lower

complexity terms). To improve over code opt, which uses on

average d(2m̄ + 1)(C + 1) (C denotes the context window

range) operations to perform these updates within the entire

context window, it has to hold that 3u < 2(C + 1).
Given that the sizes of the context windows are picked uni-

formly from the odd numbers in range {3, . . . , 2C+1}, where

two subsequent picks are independent from one another, we

can compute that the expected number of words falling out of

the context window in each update is u = 1+ C2+2
3C (excluding

line boundaries), which is also equal to the expected number

of words falling into the context window. For the default

hyperparameter C = 5, u = 2.8. Thus, we can easily infer

that 3u < 2(C + 1) indeed holds and is expected to yield a

speedup.

Note that this approach creates additional delay between

reading and writing to the rows of Min, but empirically this

does not harm the evaluation score of any of the tasks we

present in Section IV.

Fixed window for dynamic hidden layer update (DHF).
Since the window size is picked randomly in each iteration,

some words will fall in and out of the context window multiple

times, forcing DH to remove and add the same subword

vectors to h multiple times over a short period of time. To

mitigate this, we fix the window size. While potentially saving

time, this approach comes with a pitfall: the variable window

size is a natural way of sampling context words that are closer

to a current word wi with greater probability, which reflects

a greater contribution of these words to the current word’s

meaning. DHF effectively ignores the impact of the distance

of context words. When using this approach, u is always equal

to 2, providing even further speedup.

Byte-Pair vocabulary (BPE h). We also propose an al-

ternative approach to subword embeddings, replacing the

subwords by Byte-Pair Encoding (BPE) tokens [28]. These

are produced with the Hugging Face Tokenizers library [29]

in the form of token IDs for the h most frequent word frag-

ments, where h is a hyperparameter. We expect this to reduce

execution time and memory consumption as the number of

tokens is typically an order of magnitude smaller than that of

subwords. To our knowledge, this is the first attempt to apply

BPE tokenization to provide additional subword information

in a fastText-like fashion. In our experiments in Section IV,

we train the tokenizer over the same training corpus as our

embeddings, but both trainings could use different corpora. In

case the BPE variant of fastText is unable to tokenize a word

found in its training corpus (e.g., because it was absent from

the corpus used for training the tokenizer), the word remains as

it is, without additional embeddings. An alternative approach

would be to create embeddings for tokens consisting of single

characters: however, we found that if many words fail to be

tokenized, this may cause a drastic slowdown, likely due to

update conflicts on the single-character tokens. In Alg. 1, using

the BPE variant means replacing “subwords” with “tokens.”

IV. EVALUATION

Setup. We use a dual-socket Intel(R) Xeon(R) Silver 4114

CPU processor (Skylake-SP, 20 physical cores) in all exper-

iments, except for a paragraph on KNL, where we use a

single Intel Xeon Phi 7290 processor (KNL, 72 cores)1, and a

paragraph on AMD, where we use a single AMD EPYC 7742

processor (Zen 2, 64 cores).

For evaluation, we create an English corpus according to the

fastText tutorial [30]. For other languages, we proceed in anal-

ogous fashion: download respective Wikipedia dumps [31],

sanitize and lowercase with the script wikifil.pl authored

by [32]. For each language, the script is modified to capture

relevant characters and replace relevant words. We truncate

the outputs to 1 billion characters. The resulting vocabulary

sizes are: (a) 218,316 words for English, (b) 592,674 words

for German, (c) 385,596 words for Russian.

The results for English are presented in Table I. The names

of algorithmic variants match those from Section III and

Fig. 2. We omit negative sharing (NS) due to low accuracy.

In tokenized runs (BPE), we use h = 20K, 40K, 200K. All

other hyperparameters are the fastText defaults. The speedups

shown are over the original implementations SG original and

CBOW original, respectively, from the original fastText [10],

run with the same number of threads. The scaling column

shows the speedup of our code when run with 20 threads

compared to 1 thread. The runtimes are consistent over several

runs. We measure performance in flops/cycle by first counting

the floating point operations in an average run, and dividing

this number by the measured runtime in cycles.

We perform various semantic and syntactic accuracy tests

explained below. The best accuracy scores for each test are

marked in blue. Pareto-optimal combinations of accuracy

scores are shown bold-faced. Pareto-optimal means that no

other algorithmic variant dominates it, i.e., is better on each

score. Intuitively, the pareto-optimal variants are the best

variants for a given task. Together with Fig. 2, the tables also

show the incremental impact on accuracy and execution speed

of each variant.

Accuracy tests. We perform multiple evaluation tasks to test

the quality of our embeddings. First, we test our embeddings

with the word analogy task script provided with word2vec [8]

for both semantic and syntactic accuracy. For English, we

use the questions-words (QW) dataset [33]. For German, we

use its translation [34]. Additionally, we employ the Vecto

library [35] to evaluate on the The Bigger Analogy Test

Set (BATS) [36] on English embeddings, with the 3CosAdd

method. For all analogy benchmarks, we observe that fastText

performs better for syntactic than semantic tasks as was

already noted [10]. Second, we compute word similarity scores

with Facebook MUSE [4], using monolingual evaluation with

1Although the Xeon Phi CPUs have been discontinued, we find them a
suitable candidate to demonstrate scaling on more cores with a high-bandwidth
memory.
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TABLE I: Accuracy and speedup achieved with our library over fastText when training on English Wikipedia corpus. Blue:

best accuracy in category, bold: Pareto-optimal accuracy, “speedup”: over the original fastText run with the same number of

threads, “scaling”: speedup 20 threads vs. 1 thread for our code. Higher is better for all metrics, except time.

algorithmic

variant

accuracy time (s) speedup (times)
scaling

performance

QW BATS
MUSE Battig

1 20 1 20 1 20

sem. syn. sem. syn. thread threads thread threads thread threads

SG original 27.07 64.22 9.30 41.54 0.643 40.97 33640 2221 1.0 1.0 15.2 0.6 9.0
Our work:
SG code opt 26.37 63.75 9.29 41.61 0.647 40.85 9087 810 3.7 2.7 11.2 2.2 24.8
SG no subword 47.42 48.07 12.97 27.81 0.635 41.27 3309 253 10.2 8.8 13.1 3.1 40.9
SG batch 24.28 62.47 8.92 41.84 0.630 40.76 7631 625 4.4 3.6 12.2 1.5 18.1
SG BPE 20K 40.78 53.85 12.86 34.50 0.642 40.43 6843 527 4.9 4.2 13.0 1.6 20.9
SG BPE 40K 47.77 50.56 13.33 33.16 0.646 39.80 6948 525 4.8 4.2 13.2 1.6 20.8
SG BPE 200K 54.98 44.79 12.65 27.73 0.634 41.46 7041 526 4.8 4.2 13.4 1.5 20.7

CBOW original 9.27 67.74 5.53 63.42 0.546 32.98 19614 1484 1.0 1.0 13.2 0.6 8.0
Our work:
CBOW code opt 9.55 68.14 5.69 63.52 0.538 33.07 4285 651 4.6 2.3 6.6 2.8 18.3
CBOW no subword 51.00 54.49 14.84 32.29 0.614 40.68 951 73 20.6 20.4 13.1 2.3 29.8
CBOW DH 11.38 68.73 6.51 63.58 0.583 36.30 4079 555 4.8 2.7 7.4 2.6 19.0
CBOW DHF 5.29 57.44 3.94 51.71 0.633 31.37 4100 446 4.8 3.3 9.2 2.2 19.9
CBOW BPE 20K 22.65 46.01 10.17 36.98 0.607 35.56 1717 135 11.4 11.0 12.8 1.6 20.8
CBOW BPE 40K 30.85 40.47 10.13 33.38 0.614 36.07 1710 133 11.5 11.1 12.8 1.6 20.8
CBOW BPE 200K 43.33 26.40 8.12 24.70 0.606 40.39 1714 131 11.4 11.3 13.0 1.6 20.7

word similarity tasks on semantic datasets. Third, we use

the scripts provided by the Word Embedding Benchmarks

package [37] to perform the concept categorization (word

clustering) task. We evaluate on the semantic Battig test

set [38].

Evaluating English skip-gram. First, we evaluate mul-

tiple variants of skip-gram presented in the first section of

Tab. I. The dependencies between the variants is illustrated

in Fig. 2(a). We observe that only optimizing for efficient

execution (code opt) yields for fastText a 2.7–3.7× speedup

while maintaining accuracy. We investigated cache behavior

with the Linux perf utility and found that a 20-threaded

run of code opt results in 6.7× fewer L1 cache reads than

the original. The no subword variant yields 8–10× speedup

over original and about 3× speedup over code opt. For word

analogy, no subword improves the embeddings semantically.

The tokenized versions roughly balance between the fastText-

and word2vec-style embedding quality, with an exception

of BPE 200K where the number of tokens is close to the

vocabulary size, effectively turning only the most common

subwords into separate tokens. This approach provides a

semantic accuracy even greater than original for both BATS

and QW, however at a price of syntactic quality, all includ-

ing roughly 4–5× speedup over original and up to 1.5×
speedup over code opt. For QW, the accuracies vary greatly,

while BATS indicates that a smaller number of tokens is

generally preferable. The batch variant maintains or slightly

handicaps the accuracy of fastText, and provides a slightly

smaller speedup than the tokenized versions. The different

variants of skip-gram perform almost equally well on the

word similarity and categorization tasks, and all of them yield

Pareto-optimal results. All variants show good parallel scaling.

A prominent trend is the SG BPE variants balancing between

the semantic and syntactic accuracy of code opt-based variants

and no subword, which makes all of them pareto-optimal.

Evaluating English CBOW. The CBOW results are shown

in the second section of Tab. I; the dependencies between

variants are in Fig. 2(b). The code opt variant yields 2.3–4.6×
speedup over original, less than for skip-gram, but the obtained

accuracy is not Pareto-optimal. The number of L1 cache reads

is 7.8× smaller for a 20-threaded run of code opt over the

original. For word analogy, CBOW generally performs better

on syntactic than semantic questions. The no subword variant

provides good scaling, and over 20× speedup over original

and about 8–9× speedup over code opt. It diminishes the

discrepancy between these scores, albeit impacting negatively

the syntactic quality of the embeddings, while achieving

highest scores for word similarity and categorization. None

of the tokenized variants was able to beat no subword both

in speed and evaluation on these tasks, but they provide an

improvement in semantic accuracy over original, as well as in

word similarity and categorization. The BPE variants achieve

roughly 11× speedup over original. The DH variant provides

only a slight speedup over code opt (2.7–4.8× speedup over

original), but yields higher accuracies in all tasks, while DHF

impacts negatively all scores except for MUSE, but provides

a speedup over DH with multiple threads.

Comparison between skip-gram and CBOW. As a rule

of thumb, the fastText implementations of skip-gram per-

form much better on semantic questions in word analogy

tasks and slightly better in word similarity and categoriza-

tion tasks. For syntactic questions, the CBOW code opt and

CBOW DH variants are a better option. On the other hand,

CBOW no subword performs nearly as well for word similar-

ity and categorization tasks as skip-gram. Therefore, in specific

cases, the former can be used in lieu of skip-gram to boost
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the execution speed.

Evaluation on German and Russian corpora. Table II

contains results for German and Russian, presented analo-

gously to those in English. In terms of evaluation accuracy,

they are largely consistent with English, with the small

exception of CBOW BPE 20K, which performs better than

CBOW no subword on the German corpus. This indicates

the impact of the number of tokens used during training

and opens opportunities for further investigation. Noteworthy,

CBOW DH achieves the best scores on syntactic tasks for all

evaluated languages. Using skip-gram with BPE tokens rather

than fastText-style subwords performs very well in terms of

both speedups and accuracy scores, all of which are Pareto-

optimal. The code opt variants yields slightly better speedups

than for English, and further optimizations lead to significantly

greater speedups. The code opt variants yield roughly 3.5–

5× speedup over their respective original versions. The best

achieved improvement is CBOW no subword, up to 50× for

Russian. This shows that our improvements are particularly

beneficial for morphologically-rich languages with a large

number of subwords per word.

Experiments on synthetic data. We have additionally

implemented code snippets imitating the execution of code opt

variants for the most computationally intensive parts of the

code and run them on a single CPU core to estimate the

achievable performance. Let V be a large number imitating

the vocabulary size. We experiment on a d × V matrix A,

and vectors x, y of length d, containing synthetic data to

analyze how different data access patterns affect the overall

performance of our algorithm. We operate on warm cache,

and average over 100,000 runs.

We consider three computationally heavy subroutines char-

acterized in the beginning of Section III, modified such that:

• Update hidden layer: the division at the end is removed.

The subroutine sums m rows of A and stores the result in

x. This involves md flops, 4d(m+ 1) bytes in compulsory

reads, and 4d bytes in compulsory writes.

• Compute loss: all scalar operations are removed. Each of m
iterations works with a single row of Ai. In each iteration,

we perform a single dot product r = x ·Ai, whose result is

subsequently used in two vector scale-adds: y = y + rAi

and Ai = Ai+rx. This involves 6dm flops (the initial value

of accumulators is zero), 4 · 3d bytes in compulsory reads

and 4 · 2d bytes in compulsory writes.

• Save gradient: the subroutine adds y to m rows of A. This

involves md flops, 4d(m + 1) bytes in compulsory reads,

and 4dm bytes in compulsory writes.

We consider four patterns of accessing the rows of A:

(a) local operates on the first 8 rows of A. This ensures the

data stays in L1 cache. (b) sequential operates on the first m
rows of A. The rows are accessed directly. (c) sequential-array
operates on the first m rows of A. The row numbers are ac-

cessed indirectly via an array containing values {0, . . . ,m−1}.
(d) random-array operates on m random rows of A. The row

numbers are accessed indirectly via a random array. This is

the most accurate imitation of the data access pattern used by

word2vec and fastText.

Figure 3 presents the results of this experiment. We observe

that the performance drops significantly in Figs. 3(a), 3(c)

when we operate on m rows of data. These are both capped by

the throughput of L2 cache which can load or store only 64

bits per cycle. The maximum theoretical performance is thus

16 flops (one AVX-512 add) per cycle and every two cycles

respectively. We obtain roughly half of these. Additionally, we

observe that indirect access via an array in Fig. 3(c) impacts

the performance negatively for a small number of subwords

(when the data fits in L1 cache), even if the access pattern

is sequential. In the same subroutine, we observe that the

performance drops even further and becomes less predictable

when the access pattern becomes random. In Fig. 3(b) we

observe steady performance slightly lower than 16 flops/cycle,

even when the data does no longer fit in L1 cache. This is

likely because the dot product operates on short vectors, and is

finalized by a series of additions and a reduce, which introduce

dependencies in the code. In the second part of the subroutine,

each loop iteration performs two FMAs and requires one L2

cache store and one L2 cache load. This means that one AVX-

512 FMA (32 flops) can be performed every cycle.

We observe that the isolated performances are higher than

those obtained in Tab I. This can be partly due to the actual

algorithms spending a portion of time managing integer-based

auxiliary data structures, such as arrays with ngram indices.

Execution on large data. To show scalability for increasing

data size, we run the code opt variants on a full English

Wikipedia corpus which is about 39.6 times larger than the

English corpus we used in the previous experiments. We

observe that with 20 threads, the models take 41.7 times

(Skip-Gram) and 39.0 times (CBOW) longer to train compared

to their 20-threaded counterparts in Table I, which shows

excellent scalability with data size.

Execution time on KNL. To demonstrate further scaling

on manycore CPUs, we repeat the above trainings on the

English Wikipedia corpus on a 72-core Intel Knight’s Landing

processor. We use the numactl command to use KNL’s fast

MCDRAM memory as preferred over regular DRAM. The

results in Table III show that we obtain consistent speedups

over the original fastText, as well as excellent scaling, up

to 63×, the latter largely due to high-bandwidth memory

reducing the runtime of memory-intensive code.

Execution time on AMD EPYC.
In a final experiment, we measure execution times on a 64-

core AMD EPYC processor. Note that as of now, no AMD mi-

croarchitecture supports 512-bit AVX-512 vector instructions,

so we rewrote the code for the 256-bit AVX and AVX2, but

without AVX-specific optimizations due to time constraints.

Table IV illustrates our findings. Interestingly, for 64-threaded

runs, we observe that scaling on AMD is far inferior to Intel,

even with the original fastText code. Our scaling becomes even

worse, providing little advantage over the original variants

with all cores used. We attempt to investigate this issue by

adding to our measurements 20- and 32-threaded runs, where

we observe that due to scalability issues, our speedup over the
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TABLE II: Accuracy and speedup achieved with our library over fastText when training on (a) German and (b) Russian

Wikipedia corpora. Blue: best accuracy in category, bold: Pareto-optimal accuracy, “speedup”: over the original fastText run

with the same number of threads, “scaling”: speedup 20 threads vs. 1 thread for our code. Higher is better for all metrics,

except time.

algorithmic

variant

accuracy time (s) speedup (times)
scaling

QW
MUSE

1 20 1 20

sem. syn. thread threads thread threads

SG original 21.13 49.94 0.587 51747 6095 1.0 1.0 8.5
Our work:
SG code opt 19.41 49.12 0.575 14599 1233 3.5 4.9 11.8
SG no subword 42.31 27.29 0.589 4511 325 11.5 18.8 13.9
SG batch 17.43 49.13 0.573 11249 870 4.6 7.0 12.9
SG BPE 20K 29.91 36.83 0.589 9440 682 5.0 8.94 13.9
SG BPE 40K 34.55 29.96 0.593 9908 678 5.2 9.0 14.6
SG BPE 200K 45.90 23.39 0.593 9830 675 5.3 9.0 14.6

CBOW original 4.71 58.94 0.507 31674 3837 1.0 1.0 8.3
Our work:
CBOW code opt 4.30 59.09 0.510 7452 1114 4.3 3.4 6.7
CBOW no subword 37.75 27.66 0.559 1315 92 24.1 41.8 14.3
CBOW DH 5.96 59.81 0.527 6406 911 4.9 4.2 7.0
CBOW DHF 1.86 54.17 0.591 6117 845 5.2 4.5 7.2
CBOW BPE 20K 11.19 31.31 0.542 2413 182 13.1 21.1 13.3
CBOW BPE 40K 18.67 23.25 0.557 2389 174 13.3 22.0 13.7
CBOW BPE 200K 27.81 16.14 0.560 2461 170 12.9 22.6 14.5

(a) German

algorithmic

variant

accuracy time (s) speedup (times)
scaling

QW
MUSE

1 20 1 20

sem. syn. thread threads thread threads

SG original 12.29 77.61 0.633 30219 2959 1.0 1.0 10.2
Our work:
SG code opt 12.86 77.81 0.622 7409 710 4.1 4.2 10.4
SG no subword 23.82 42.89 0.588 2501 179 12.1 16.5 14.0
SG batch 10.58 76.32 0.629 5914 565 5.1 5.2 10.5
SG BPE 20K 14.22 51.86 0.621 5179 376 5.8 7.9 13.8
SG BPE 40K 16.75 46.81 0.608 5212 374 5.8 7.9 13.9
SG BPE 200K 22.90 45.91 0.600 5230 370 5.8 8.0 14.1

CBOW original 8.88 80.78 0.495 20510 2599 1.0 1.0 7.9
Our work:
CBOW code opt 9.18 79.79 0.497 4541 569 4.5 4.6 8.0
CBOW no subword 16.01 37.35 0.532 731 51 28.1 50.5 14.2
CBOW DH 9.17 81.43 0.523 4790 455 4.3 5.7 10.5
CBOW DHF 7.32 78.75 0.557 4451 418 4.6 6.2 10.6
CBOW BPE 20K 8.28 34.82 0.513 1371 103 15.0 25.2 13.3
CBOW BPE 40K 8.96 40.66 0.493 1349 100 15.2 26.1 13.6
CBOW BPE 200K 11.13 35.96 0.537 1343 96 15.3 27.0 14.0

(b) Russian

original variants becomes gradually throttled as more threads

are involved in the execution. These findings require further

investigation and show that, as common in HPC, performance

porting across micro-architectures requires a certain tuning

effort.

Comparison against GPU speedup. We compare the

speedup of our no subword code over the original Word2vec

library against the speedup obtained on GPU [21]. The Authors

report up to 1.6× speedup over a 12-threaded CPU run. Our

no subword versions of the code are roughly 5 (skip-gram)

and 6 (CBOW) times faster than the 20-threaded runs of

the original word2vec. Thus, our speedups over the original

word2vec implementation are 3.25–3.75× greater than those

reported for a single GPU. Furthermore, our 20-threaded

code opt versions are 2.3–2.7× faster than the original fast-

Text, making the speed comparison superior to a single-GPU

BlazingText [20] run, which is comparable to a 16-threaded

fastText run on CPU. While these are high-level comparisons,

they indicate that our optimizations achieve greater benefits

than that of running these algorithms on GPU.

V. CONCLUSIONS

We presented a thorough evaluation, and associated open-

source implementation, of various optimization techniques
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Fig. 3: The performance of parts of the algorithm run on different data with different access schemes for d = 304. m =
subwords.

TABLE III: Speedup achieved with our library over fastText

when training on English Wikipedia corpus on a 72-core Intel

Knights Landing processor.

algorithmic

variant

time (s) speedup (times)
scaling

1 72 1 72
thread threads thread threads

SG original 100400 1542 1.0 1.0 65.1
Our work:
SG code opt 21768 430 4.6 3.6 50.7
SG no subword 14637 231 6.9 6.7 63.3
SG batch 14899 307 6.7 5.0 48.6
SG BPE 20K 15131 243 6.6 6.4 62.3
SG BPE 40K 15087 243 6.7 6.3 62.0
SG BPE 200K 15045 240 6.7 6.4 62.6

CBOW original 76865 1289 1.0 1.0 59.7
Our work:
CBOW code opt 14191 660 5.4 2.0 21.5
CBOW no subword 3750 62 20.5 20.6 60.0
CBOW DH 12461 460 6.2 2.8 27.1
CBOW DHF 12184 389 6.3 3.3 31.3
CBOW BPE 20K 4363 77 17.6 16.8 57.0
CBOW BPE 40K 4295 75 17.9 17.1 56.9
CBOW BPE 200K 4247 74 18.1 17.3 57.1

for fastText and word2vec. In particular, these include per-

formance optimizations for vector architectures, locality, and

parallelism and, algorithmically, the use of BPE tokens rather

than subwords. We highlight our best (Pareto-optimal) results,

and their corresponding speedups. For example, for English,

our code offers practitioners speedups in the range of 2.7–

20.6×, while maintaining a single- or multi-dimensional no-

tion of accuracy. We achieve good parallel scaling, which is

expected to bring even more benefits in the future, as the

number of cores further increases. The choice of algorithm

depends heavily on the accuracy metric: for all languages,

there is no universally best variant, which makes a case for

our polyalgorithmic implementation and thorough evaluation

of trade-offs. Due to the streaming nature of all variants and

good scalability with respect to both the number of threads

and the dataset size, they are applicable for both small scale

computing and HPC/HTC. Our techniques should also apply

to sent2vec [39] for sentence embeddings.
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