
A Compiler for Sound Floating-Point Computations

using Affine Arithmetic

Joao Rivera

Computer Science

ETH Zurich, Switzerland

hectorr@inf.ethz.ch

Franz Franchetti

Electrical and Computer Engineering

Carnegie Mellon University, USA

franzf@ece.cmu.edu

Markus Püschel

Computer Science

ETH Zurich, Switzerland

pueschel@inf.ethz.ch

Abstract—Floating-point arithmetic is extensively used in sci-
entific and engineering applications to approximate real arith-
metic. Unfortunately, floating-point arithmetic is not a sound
implementation of real arithmetic, i.e., it may produce different
results, does not provide error guarantees, and the errors can
become arbitrarily large. In this paper, we introduce SafeGen, a
source-to-source compiler that rewrites a given C program using
floating-point arithmetic to an efficient C program performing
the same computation soundly, i.e., it returns an error bound
that is guaranteed to contain the correct result of the program
if it had been executed in real arithmetic. Equivalently, it gives
a precision certificate on the number of correct bits in the result.
SafeGen uses affine arithmetic (AA) that keeps accuracy high
compared to interval arithmetic by preserving linear correlations
between variables. To mitigate its high cost, SafeGen combines
a novel form of static analysis to identify these correlations
with a flexible policy-based approach for their selection. SafeGen
supports SIMD intrinsics in the input and can output SIMD-
optimized code. Our results show that SafeGen-generated code
is 30–70 times faster than manually rewritten code using AA
libraries. Equivalently, SafeGen can offer many more bits of
certified accuracy within a reduced time budget.

Index Terms—floating-point arithmetic, source-to-source com-
piler, affine arithmetic, guaranteed computations.

I. INTRODUCTION

Floating-point arithmetic is natively supported across many

processor lines, including in the embedded space, and thus

widely used in many scientific and engineering applications.

When working with floating-point, developers often think of

it as a proxy for real arithmetic and expect close to exact

results. Unfortunately, while often true, the result may also

deviate arbitrarily far due to accumulating round-off errors:

floating-point arithmetic is not a sound implementation of real

arithmetic, i.e., there is no accuracy guarantee. In the worst

case the result can become meaningless or even render the

application unsafe.

Applications in different domains have identified the need

for soundness in floating-point computations. For example,

the work in [1] derives bounds on the round-off error for a

safety-critical system in avionics. An implementation of sound

floating-point arithmetic for a collision-avoidance monitor is

presented in [2]. In Model Predictive Control, round-off errors

need to be accounted for to guarantee stability [3], [4]. The

implementation of abstract domains [5] for analyzing floating-

point programs needs soundness to guarantee overapproxima-

tion [6]–[8]. Further, floating-point soundness is also required

in the robustness analysis of neural networks [9]–[11] to prevent

round-off errors from invalidating the analysis [12], [13].

Static analysis. Most of the work on floating-point sound-

ness uses static code analysis to automatically derive a bound

on the maximum round-off error of a given program [14]–[20].

However, these tools are very limited: they only support straight-

line programs with a few dozens of arithmetic operations,

most cannot handle loops and conditional branches, and often

produce pessimistic bounds since the error bound is derived

over an entire range of inputs. The work in [21] improves

scalability but is unable to analyze loops and conditionals.

Only [14] and [16] offer support for simple loops, but they

require additional information regarding the ranges of variables

or the bounds become too loose.

Interval arithmetic. An alternative approach to achieve

soundness is to rewrite the program to account for ranges. The

most cost-effective approach is to use interval arithmetic [22]

(IA) that represents the values of each floating-point variable

as intervals containing the exact result. Each floating-point

operation is then replaced by its respective interval operation

implemented either from scratch or using libraries [23]–

[26]. In addition, it is also possible to use source-to-source

compilers [27] to rewrite the code automatically for IA, thus

relieving the work from the developer while guaranteeing

soundness. Although IA can be implemented very efficiently on

modern processors, it does not maintain correlations between

variables. So ranges can only grow, which results in (very)

pessimistic bounds for long computations.

Affine arithmetic. To overcome the overestimation of IA,

a more precise approach is to rewrite the program using affine

arithmetic [28] (AA), which maintains linear dependencies

between variables. In AA, the variable ranges are represented

by a central value and a linear combination of error symbols

that indicate deviations from it. Variables become correlated

if they share a symbol, which enables cancellations and thus

tighter ranges. The cost is high however since every opera-

tion introduces a new symbol, which squares the arithmetic

complexity of the program. It is possible to alleviate this

problem by limiting the number of symbols as it is done in

some libraries [29], [30], which however, reduces precision.

Thus, the challenges with using AA for a given program are

combining fast execution with high precision, ideally obtained

automatically.

978-1-6654-0584-3/22 © 2022 IEEE

Accepted for publication by IEEE. © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

66

https://www.acm.org/publications/policies/artifact-review-and-badging-current

Contributions. In this paper, we address these challenges

with a source-to-source compiler named SafeGen (Sound Affine

Generator) that rewrites a given floating-point program into a

corresponding sound, precise, and efficient program that uses

AA. Sound means that the transformed program computes

output ranges that are guaranteed to contain the result of the

original program if it had been executed in real arithmetic. The

sizes of the ranges yield a guaranteed precision. We offer the

following specific contributions:

• The design and implementation of the SafeGen source-

to-source compiler that translates a given program using

floating-point arithmetic into an efficient sound version

using AA. SafeGen supports SIMD intrinsics in the input

and can output SIMD-optimized code.

• An efficient and flexible policy-based approach to the

selection of error symbols that avoids the explosion of

their number, and thus the high cost of AA.

• A novel form of static analysis to determine which error

symbols are likely to cancel out and thus can be used to

ultimately improve accuracy. SafeGen uses this analysis

as a preprocessing step to inform the variable selection

policies. In our benchmarks, this analysis improves accu-

racy by up to 8 bits while incurring a runtime penalty of

only 20%–30% compared to the sound program without

the analysis.

• A thorough evaluation of accuracy and performance of

SafeGen on various benchmarks. As expected, SafeGen

can offer significantly higher certified accuracy in cases

where IA fails. Further, SafeGen produces code that is

usually 30–70 times faster than the manual use of AA

libraries, i.e., it can often deliver 10, 20, or more bits of

certified accuracy within a reduced time budget.

II. BACKGROUND

We introduce necessary background on IA [22], AA [28],

and the IGen compiler [27], which is closest related to our

work and will serve as one baseline later.

A. Interval Arithmetic (IA)

Interval arithmetic [22] is the original approach for sound

floating-point computation. It computes for each operation

a bounding interval that overapproximates the error margin.

So in essence, operations on floating-point numbers a are

replaced by operations on intervals a = [aℓ, au], where the

exact value is always guaranteed to be contained in a (which

is the soundness condition). For example, the addition of a

and b can be computed as:

a+ b = [RD(aℓ + bℓ),RU(au + bu)],

where RU(x) rounds towards +∞, and RD(x) towards −∞.1

IA can be implemented efficiently, but can quickly lose too

much precision as intervals always grow. The main reason is its

inability to track correlation between variables, a phenomenon

1When using IEEE 754 upward rounding, RD can be efficiently implemented
using the identity RD(x) = −RU(−x).

known as the dependency problem [22]. To illustrate, assume

a = [0, 1]. The simple computation b = a − a will result in

b = [−1, 1] although the result is in fact equal to zero. The

reason is that the interval representation has no information

about the origin of the range.

B. Affine Arithmetic (AA)

Affine arithmetic [28] addresses the loss of correlation in

IA by representing variables as affine forms:

â = a0 +
k∑

i=1

aiǫi, with ǫi ∈ [−1, 1], (1)

where a0 is the central value of the interval enclosing the affine

variable, ǫi are symbolic variables called error symbols that

represent independent deviations from the central value, and the

coefficients ai, i > 0, are the magnitudes of those deviations.

The interval enclosing an affine expression is computed as

follows:

a = [a0 − r(â), a0 + r(â)], where r(â) =

k∑

i=1

|ai| (2)

is the radius of the affine expression. AA improves over IA

when error symbols are shared by multiple variables, since

then cancellations become possible and ranges can shrink.

In our previous example, assume a = [0, 1] is represented

as â = 0.5 + 0.5ǫ1. Computing b̂ = â − â results in b̂ =
0.5+0.5ǫ1− (0.5+0.5ǫ1) = 0, which is even the exact result.

Most cancellation will be only partial, which still improves

over IA.

Affine operations such as addition and subtraction can be

easily derived from (1), but again round-off errors have to be

taken into account. This is done by adding a new error symbol

with each operation [28]. We show addition and multiplication

as examples.

Affine addition is computed as:

â+ b̂ = (a0 + b0) +

k∑

i=1

(ai + bi)ǫi + xǫk+1, (3)

where x is the coefficient of the new symbol with the

accumulated round-off error of the intermediate operations.

For affine addition, x is derived as:

x =
k∑

i=0

RU(ai + bi)− RD(ai + bi). (4)

The summation is performed using upward rounding to preserve

soundness.

For multiplication, the exact result cannot be represented in

general and AA overapproximates the coefficient of the new

symbol, which takes the form

â · b̂ = a0b0 +
k∑

i=1

(a0bi + b0ai)ǫi +
(
r(â)r(̂b)+x

)
ǫk+1. (5)

Similar as for addition, x accumulates the round-off errors of

intermediate operation. This is done soundly by computing the

67

products a0bi (and b0ai) using upward and downward rounding

and accumulating the difference in x. The final addition in

a0bi + b0ai is computed using (4).

Assuming that m ≤ k symbols are shared between two

variables, affine addition and multiplication require 4m+3 and

10k+4m+3 floating-point operations, respectively. Note that if

we represent a computation as a directed acyclic graph (DAG)

of affine operations, each creating a new error symbol, the

resulting affine expression in one node only contains the new

symbols from its ancestors nodes. Thus, each affine variable

only contains a subset of all occurring error symbols.

The number of symbols increases by one with every oper-

ation performed. Thus, the ith affine operation requires O(i)
operations. If a program originally performs g(n) = O(f(n))
arithmetic operations, its complexity, when using AA, becomes∑g(n)

i=1 O(i) = O(
∑g(n)

i=1 i) = O(f2(n)). Thus, AA squares the

arithmetic complexity of the original program.

To alleviate the increase in arithmetic complexity, current

affine arithmetic libraries [29], [30] limit the number of error

symbols in affine variables by fusing two or more symbols

into one, thus trading possible correlation for efficiency. Two

symbols are soundly fused to a new error symbol as

aiǫi + ajǫj = (|ai|+ |aj |)ǫk+1. (6)

When and how to fuse error symbols is also a key element in

our work.

C. IGen Compiler

IGen [27], available at [31], is a source-to-source compiler

that translates a C program performing floating-point computa-

tions to a sound C program using IA. The compiler uses the

Clang LibTooling infrastructure [32] to perform its transforma-

tions. IGen can generate SIMD-optimized implementations of

IA using either single or double precision floating-point for the

endpoints, as well as the higher double-double precision [33].

In addition, the compiler can improve accuracy by using an

algorithmic transformation for the reduction pattern in linear-

algebra-type programs. In this work, we build on the Clang-

based infrastructure of IGen to create our own source-to-source

compiler SafeGen that targets AA.

III. SAFEGEN OVERVIEW

SafeGen translates a C program performing floating-point

computations to a C program that performs the same compu-

tation soundly using AA. Soundness means that during the

computation and in the output, the (ranges specified by the)

affine expressions are guaranteed to contain the exact results

of the original program as if computed using real arithmetic.

The sizes of the ranges yield error guarantees.

Fig. 1 shows the high-level architecture of SafeGen. The in-

put is a C function (possibly using SIMD intrinsics) performing

floating-point computations, target precisions for the central

value (a0 in (1)) and the coefficients ai of the affine variables

(default is double precision), and the maximal number k of

symbols that can be stored in each affine variable. The output

is a C function performing the same computation soundly using

Fig. 1. High-level architecture of SafeGen.

affine arithmetic, optionally optimized with SIMD intrinsics.

Additional input parameters can be set to select how symbols

are stored in the internal data structure (symbol placement

policy) and to configure which symbols to fuse after every

affine operation (symbol fusion policy) to control the (high)

cost of AA. These policies are a key contribution to boost

precision and are explained in detail in Section IV.

In the first compilation step, SafeGen optionally performs a

novel form of static analysis to identify those affine variables

whose error symbols are most likely to cancel out. The output of

this stage is the input function annotated with this information.

SafeGen uses this information to prioritize the symbols of these

variables during the computation, effectively preventing their

error symbols from fusion (as in (6)) and ultimately improving

accuracy.

In the following steps, SafeGen uses the Clang LibTool-

ing [32] infrastructure to construct the abstract syntax tree

(AST) of the input program. Every node performing a floating-

point computation is then translated to its corresponding affine

operation. In combination with the transformations performed,

we provide an efficient library implementing these operations

together with the different policies for the management of

symbols.

Section IV explains the design and implementation of the

compiler in detail. The flexible policy-based approach for the

selection of error symbols is explained in Section V. Finally, in

Section VI we discuss the static analysis to find the variables

to prioritize.

IV. AFFINE ARITHMETIC IN SAFEGEN

In this section we describe the SafeGen compiler in detail.

We explain the supported operations, data types and the

compilation process.

A. Affine Arithmetic Library

As part of SafeGen, we implemented our own library

supporting affine arithmetic operations in various precisions

and different policies for the selection of error symbols.

68

Affine types. We support double precision and double-

double [33] precision affine data types named f64a and dda,

respectively. The central value of an affine expression is

implemented with the respective precision, whereas for both

standard double precision is used for the symbol coefficients.

Internally, these types store the symbols in an array whose

size is fixed and thus limits the number of error symbols. In

addition, we also support single precision affine types.

Affine operations. SafeGen supports all basic arithmetic

operations including addition, multiplication, division, along

with comparison operations, casts and some elementary func-

tions. To guarantee soundness, the round-off error of every

intermediate operation is computed to create a new error symbol.

The number of symbols is kept bounded through fusion as

explained in Section V.

NaN and infinity. NaN and infinity are part of the floating-

point standard [34] and can appear during an affine operation.

To guarantee soundness, we use the following conventions. If

an affine variable contains (as one of the coefficients ai) a NaN,

its value can be anything, including a NaN. If an affine variable

contains infinity but no NaNs, its value can be any floating-

point number except a NaN. Finally, a positive infinity in the

central value but not in the coefficients means that the value is

bigger than the maximally representable floating-point number.

B. Source-to-Source Transformations

We use the Clang LibTooling [32] infrastructure for the

source-to-source transformations. SafeGen first generates the

AST of the input program using Clang. Then, it translates every

node in the AST to its corresponding affine representations. In

particular, there are two types of nodes that are transformed,

namely, declarations (Decl) and expressions (Expr). A Decl

node declares variables, functions, fields, etc., and it is

transformed by replacing the underlying floating-point type in

the declaration to a supported affine type. On the other hand,

Expr nodes represent arithmetic operations, function calls,

constants, etc. This type of node is transformed by replacing

the operations by function calls to our affine library. Elementary

functions in the input are also transformed accordingly. For

example, sqrt(x) is transformed to aa sqrt f64(x).

Fig. 2 shows an example of a program transformed by

SafeGen. As can be seen, the type of the declaration in line 2

of the input (top) is replaced by an appropriate affine type

in line 3 of the output (bottom). Further, lines 4–6 show

the transformation of the expression c = a * b + 0.1 to

multiple affine operations.

Handling constants. Constants in a program may not be

exactly representable as a floating-point value. Thus, we convert

constants in a conservative way to an affine expression. When

a constant x is encountered, SafeGen assumes that is accurate

with at most 1 ulp(x) of error. ulp(x) is the unit in the last

place of x which is the gap between its two adjacent floating-

point numbers. The floating-point value closest to its value

is used for the central value of the new affine variable, and

a new fresh symbol is created with magnitude ulp(x). As an

example, line 5 in Fig. 2 (bottom) shows the transformation

Example input function:

1: double foo(double a, double b) {
2: double c; // Decl
3: c = a * b + 0.1; // Expr
4: return c;
5: }

.Output function:

1: #include "safegen_lib.h"
2: f64a foo(f64a a, f64a b) {
3: f64a c, t1 , t2;
4: t1 = aa_mul_f64(a, b);
5: t2 = aa_set_f64 (0.100000000000000002 ,

1.3877787807814457e -17);
6: c = aa_add_f64(t1 , t2);
7: return c;
8: }

.Fig. 2. Transformation of function foo to use affine operations.

of the constant 0.1. We assume that constants that are exactly

representable as integers, e.g. 0.0, are exact and do not create

an additional error symbol. In addition, SafeGen also supports

the constant folding optimization soundly.

Support of SIMD intrinsics. SafeGen also handles SIMD

intrinsics in the input function by replacing them with AA

operations. We provide hand-optimized implementations of AA

operations for the most common SIMD intrinsics. For others

we use the SIMD-to-C compiler provided with IGen [27] as a

preprocessing step to generate C code for the intrinsics.

V. POLICIES TO HANDLE ERROR SYMBOLS

As explained in Section II, the cost of AA is high due to

the explosion in the number of error symbols. To alleviate this

problem, we impose a limit on the number k of error symbols

in the affine variables in (1), which creates a trade-off between

accuracy and performance. Once an affine operation surpasses

the limit, some symbols are fused and possible correlation

downstream is lost. The challenge therefore is the proper

selection of symbols for fusion to reduce this loss. In this

section, we propose different symbol fusion policies and also

symbol placement policies that determine the order in which

symbols are stored, which impacts the runtime of AA, and the

efficiency of SIMD vectorization.

A. Symbols Placement Policies

For affine operations such as addition (3) or multiplica-

tion (5), it is necessary to identify common error symbols in

the input. To do so efficiently, we propose two different symbol

placement policies that we describe next.

Sorted placement policy. In the sorted placement policy,

we keep the symbols in each affine variable sorted by their

identifiers. When performing an affine operation, we merge

the symbol arrays of the inputs into a sorted array. Duplicates

are then adjacent and can be combined. At this point, the

array length may exceed the imposed limit on the number of

symbols, which requires an additional fusion of symbols (see

Section V-B below).

Direct-mapped placement policy. With the sorted placement

policy common symbols in the inputs can be identified

69

TABLE I
SYMBOL FUSION POLICIES.

Fusion policy Description

Random (RP) Symbols to fuse are randomly selected.

Oldest symbol (OP) The oldest created symbols are fused.

Smallest value (SP) Symbols with the smallest absolute value are fused.

Mean threshold (MP) Symbols below the mean are fused.

Fig. 3. An artificial example of adding the symbols of two affine variables
with k = 3 symbols and different fusion policies. Note that usually the
coefficients are small floating-point values and not integers; thus also no new
round-off error symbols occur here. (a) uses sorted placement policy and
(b) uses direct-mapped placement policy. The initial variables are shown at the
left, the intermediate result of the addition is in the middle without applying
the fusion policy. The final results for SP, MP and OP fusion policies are
shown on the right.

efficiently, but the arbitrary placement makes vectorization

difficult. Thus, we also consider a placement in unique positions,

inspired by the direct-mapped placement policy in caches.

Namely, when a symbol s is created, we derive the position

in which it is stored based on its identifier by calculating

s mod k, where k is the array size. The fusion policies in

Section V-B are then designed to avoid conflicts. For example,

new symbols from fusion as in (6) obtain identifiers to occupy

free slots.

A symbol is now always found in the same position of the

array in all variables. This simplifies the implementation for

identifying and adding common symbols coefficients of two

affine variables to an element-wise masked addition, which can

also be done efficiently using SIMD vectors. The downside of

this approach is that in the case of two conflicting symbols in

the inputs, one always has to be removed through fusion.

B. Symbol Fusion Policies

Since we limit the number k of symbols in affine variables,

we propose various policies for selecting symbols to fuse

(see (6)) after every affine operation. Assuming that we end

with n (which is ≤ 2k+1) symbols after an operation, n−k+1
are fused into a new symbol and k − 1 are kept. Our policies

are summarized in Table I. The random policy (RP) selects

randomly the symbols to be fused and serves as baseline.

Oldest symbol fusion policy (OP). This policy fuses the

least recently created symbols first. It is implemented by always

assigning higher identifiers to new symbols and combines well

with the sorted placement policy.

Smallest value fusion policy (SP). Low magnitude symbols

are less likely to impact accuracy if they cancel out. Thus SP

fuses these symbols first. This policy incurs no overhead when

using the direct-mapped placement but incurs cost with sorted

placement.

Mean threshold fusion policy (MP). This policy operates

like SP but uses the mean of the absolute values of all symbol

coefficients as the threshold for fusion, which makes it more

efficient than SP when using sorted placement. If not enough

symbols are found, OP is used for the rest. For direct-mapped

placement, MP is equivalent to SP.

Example. Fig. 3 shows an example of the fusion policies

when adding two affine variables with k = 3 symbols. (a) uses

sorted placement and (b) uses direct-mapped. Different policies

usually yield different outcomes. Note that in the direct-mapped

placement, conflicts (here ǫ1 and ǫ4) have to be resolved

according to policy. E.g., for SP, ǫ4 has to be fused even

though overall is not among the two smallest.

Arithmetic cost. The cost of performing affine operations

varies depending on the selected fusion policies. In particular,

addition and multiplication using the SP policy with direct-

mapped placement requires 3k + 2m+ 3 and 13k + 2m+ 3
floating-point operations (including comparisons), respectively,

where m is the number of symbols shared by the operands.

Our vectorized implementation (for 4 divides k) uses 1.75k
and 4.25k arithmetic intrinsics, respectively, and additional

1.25k blend operations.

VI. STATIC ANALYSIS TO PRIORITIZE SYMBOLS

The strength of AA over IA lies in the possible (usually par-

tial) cancellations between joint error symbols. The opportunity

for this to happen depends on the structure of the computation

DAG associated with the program. In this section, we present

a novel static analysis approach that identifies variables whose

symbols are likely to cancel out and thus should be protected

from fusion to boost accuracy.

As a simple example, consider the computation x · z − y · z.

The affine variable z is the only one that is used twice and

therefore its error symbols can cancel out when meeting in the

subtraction operation. This becomes evident in the computation

DAG shown in Fig. 4. Each node is tagged with the new error

symbol it creates; the input nodes have one symbol each. The

symbol ǫz propagates through the graph and cancellation occurs

in the last node. Fig. 4 thus shows the property that we exploit

in our analysis, namely that cancellation in AA can occur if

and only if two nodes s and t (here z and t3) are connected

by two paths. In addition, for cancellation to happen, the error

symbol ǫs (here ǫz) has to be protected from fusion along both

paths to t. The challenge is therefore to keep symbols with

this property while obeying the capacity k. The fusion policies

in Section V-B cannot guarantee this since they lack the global

knowledge of the DAG.

70

DAG of x · z − y · z: Example with k = 2:

x = 1 + ǫx
y = 1 + ǫy
z = 1 + ǫz

t1 = x · z = 1 + ǫz + 2ǫt1
t2 = y · z = 1 + ǫz + 2ǫt2

t3 = t1 − t2 = 2ǫt1 + 2ǫt3

Fig. 4. DAG of computation x ·z−y ·z where ǫz cancels out in the last node.
The dotted lines indicate the propagation of symbol ǫz through the DAG till
cancellation. On the right, there is an example where this occurs when the
limit on the number of symbols is k = 2.

In the following, we first formalize the problem of finding

symbols to prioritize. Then we explain how to model and

solve it as an integer linear program (ILP). Finally, we explain

the source-to-source transformation process to prioritize the

symbols.

A. Max Reuse Problem

We model a program as a DAG, in which each node

represents an AA operation (except for the source nodes that

are input variables) and edges represent data dependencies

between operations. We assume that each node creates an error

symbol that can potentially propagate through the DAG. In

addition, each node can propagate k − 1 other symbols from

ancestor nodes. For example, in Fig. 4, symbol ǫz propagates

through node t1 which means that the symbol is not removed

by the fusion policy after the computation. In contrast, ǫx
cannot also propagate through node t1 since k = 2. When a

symbol propagates through a node we say that it is prioritized

in this node. When a symbol arrives to a node from two

different parents, we say that there is reuse and cancellation

may happen. Informally, our static analysis determines the

symbols that should be prioritized by each node in order to

maximize reuse. In the following we formalize this problem.

We start by defining the needed concepts.

Definition 1 (Reuse connection). Given a directed acyclic

graph G = (V,E), a node s ∈ V is reused at node t ∈ V if

there are two paths p1, p2 from s to two distinct parents of t.

We call the set p1 ∪ p2\{s} a reuse connection of (s, t).

The reuse connection of a pair of nodes (s, t) indicates

the nodes in which the symbol ǫs must be prioritized to then

potentially cancel at node t. As an example, Fig. 5 shows a

DAG where nodes 1, 2, and 6 yield reuse at node 9. Their

respective reuse connections are shown in the top table in the

figure. In addition, node 2 also yields reuse at node 11 with

two possible reuse connections. In general, there are mn reuse

connections between two nodes s, t, where m and n are the

number of paths from s to the two parents of t, respectively.

Definition 2 (Priority assignment). A priority assignment

π is a map V → 2V , s 7→ A with A ⊆ V . It assigns to

(s, t) Reuse connections

(1, 9) {6, 7, 8}
(2, 9) {6, 7, 8}
(2, 11) {6, 7, 9, 10}, {6, 8, 9, 10}
(6, 9) {7, 8}

s π1(s) π2(s)

1 {} {6, 7, 8}
2 {6, 7, 8, 9, 10} {6, 8, 9, 10}
6 {7, 8} {7, 8}

Total reuse profit:
Qπ1 = (2, 9), (2, 11), (6, 9)

Qπ2 = (1, 9), (2, 9), (6, 9)

ρtot(π1) = ρ(2)+ρ(2)+ρ(6) = 5
ρtot(π2) = ρ(1)+ρ(2)+ρ(6) = 5

Fig. 5. Example of a DAG with its reuse connections (top table) and two
possible priority assignments π1 and π2 (middle table). The total reuse profit
ρtot(π) of π1 and π2 is at the bottom.

every node s a set of nodes in which the symbol ǫs should be

prioritized (if it occurs), i.e., protected from fusion.

Fig. 5 shows two (of many) possible priority assignments

for the DAG, namely π1 and π2. Since each node can prioritize

(not fuse) at most k−1 symbols, a priority assignment may not

be feasible if it exceeds this threshold in a node. For example,

assignment π2 in the figure is unfeasible for k = 3 because

node 8 has to prioritize 3 > k−1 symbols, namely 1, 2, and 6.

Reuse profit. The goal of our static analysis is to find a

feasible priority assignment that maximizes possible cancella-

tion of symbols, i.e., that maximizes reuse. High magnitude

symbols are more likely to improve accuracy if they cancel out

and thus it is best to prioritize those. To account for this in the

analysis, we introduce the notion of reuse profit as a heuristic

to estimate the benefit of reusing a symbol. This heuristic is

based on the observation that, in AA, new symbols are likely

to have higher magnitudes since they are created by fusing

symbols (see (6) and Section V-B) from their ancestors.

Definition 3. The reuse profit ρ(s) of a node s ∈ V is the

number of its ancestors including s.

Based on this heuristic notion of reuse profit, we can now

estimate the total benefit of using a priority assignment π

by summing up profits of all reuses that takes place when

prioritizing based on π. Formally:

Definition 4. The total reuse profit of a priority assignment π is

ρtot(π) =
∑

(s,t)∈Qπ

ρ(s), where (7)

Qπ = {(s, t) : π(s) ⊇ a reuse connection of (s, t)}. (8)

Intuitively, if a pair of nodes (s, t) is in Qπ , it means that s

is prioritized in a reuse connection from s to t; thus, a reuse

of s is guaranteed to happen and total profit increases. Fig. 5

shows the total reuse profit of π1 and π2, which is five for both.

Max reuse problem. We now formalize the problem of

maximizing possible cancellation in a DAG, as finding a priority

71

assignment π that maximizes the total reuse profit ρtot(π) under

the constraint that each node can prioritize at most k − 1
symbols, i.e., formally,

for all v ∈ V : |Pv| ≤ k − 1, where Pv = {s : v ∈ π(s)}.

In the example in Fig. 5, and with k = 2, π1 is a feasible

assignment of priorities and it is in fact an optimal solution

with ρtot(π) = 5.

B. ILP Formulation

To solve the max reuse problem we formulate it as an integer

linear program.

Variables. The priority assignment π(s) ⊆ V for a node

s ∈ V is encoded as a Boolean vector ps of size |V |: the

nonzero elements of ps correspond to the nodes that prioritize s.

The set Qπ of node pairs in (8) is encoded as Boolean vectors

q1, . . . ,q|V| of size |V |. A non-zero element at location t in

qs means that (s, t) ∈ Qπ .

Finally, we introduce the Boolean matrix Rs of size |V |2.

The t-th column encodes a reuse connection of (s, t). If there is

no such reuse connection then the column is filled with zeros.

ILP program. The max reuse problem can be formulated

as an ILP as follows:

maximize
∑

s∈V

[ρ(s), ρ(s), . . . , ρ(s)]qs

subject to
∑

s∈V

ps ≤ [k − 1, k − 1, . . . , k − 1]T,

ps = Rs ◦ qs for all s ∈ V,

where the binary operator ◦ indicates a Boolean matrix-vector

multiplication, i.e., over the Galois field GF(2).2

Intuitively, the objective function that is maximized computes

the total reuse profit, and the first constraint guarantees that at

most k−1 symbols are prioritized per node. The last constraint

expresses that the priority vector ps is formed as a combination

of reuse connections in the columns of Rs selected by decision

variable qs. This means, that we only prioritize nodes that are

in a reuse connection since other nodes do not contribute to

the total profit.

Example. For the DAG in Fig. 5, and considering k = 3,

the matrices R1,R4 have only one non-zero column, and R2

has two. For readability, we omit columns filled with zeros

and the source nodes:

R1 =
[
· · · 1 1 1 0 0 0

]T
,

R2 =

[
· · · 1 1 1 0 0 0
· · · 1 1 0 1 1 0

]T

,

R4 =
[
· · · 0 1 1 0 0 0

]T
.

The reuse connections in each column of Rs are the same that

are shown in the topmost table of Fig. 5. Feeding these inputs

2Boolean operations can be modeled in ILP by introducing auxiliary
variables.

Fig. 6. The architecture of the preprocessing step in SafeGen to prioritize
symbols of relevant variables.

1: double foo(double* x, double* y, double* z, int n) {
2: for (int i = 0; i < n; i++) {
3: #pragma safegen prioritize z[i]
4: double t1 = x[i] * z[i];
5: double t2 = y[i] * z[i];
6: #pragma safegen prioritize_none
7: z[i] = t1 - t2;
8: }
9: }

.Fig. 7. Example of annotated output after prioritizing variables.

to an optimizer, e.g., Gurobi [35], yields the following solution

for Ps with a maximum profit ρtot = 5:

p1 =
[
· · · 0 0 0 0 0 0

]T
,

p2 =
[
· · · 1 1 1 1 1 0

]T
,

p4 =
[
· · · 0 1 1 0 0 0

]T
,

which means that the maximum profit is obtained using the

priority assignment π(2) = {6, 7, 8, 9, 10} and π(4) = {7, 8},

which corresponds to π1 in Fig. 5.

Extensions. The current ILP formulation can be extended

by assigning to each node a different capacity of symbols

that can be prioritized instead of our globally fixed k − 1. In

addition, the model can also be extended to consider two or

more reuse connections between two nodes. This can be done

by adding additional constraints and variables to consider this

case. Finally, input variables with multiple symbols (instead of

only one) can be modeled by adding additional source nodes

(one per symbol) in the DAG.

C. Code Transformations to Prioritize Variables

Fig. 6 shows the architecture of our preprocessing step to

automatically prioritize the symbols of relevant variables. The

input is a C program, and the output is the same program

annotated with the variables to prioritize in each operation. For

example, Fig. 7 shows an example of an annotated output.

Three-address code transformation. The first step is to

transform floating-point expressions to three-address code

72

(TAC) form. In this format, each floating-point operation is

computed in one line and temporal variables are introduced to

hold their intermediate results. This format allows to prioritize

each individual computation with different variables if needed.

DAG construction. We use the data dependency graph

analysis in LLVM to construct the DAG of the computation. We

simplify the graph in a way that each node represents a floating-

point computation, except for the source nodes which are the

input variables. The edges are data dependencies between

the nodes. Note that we do not keep loop-carried (circular)

dependencies since the analysis works on DAGs. Extending

the analysis to reason about loop-carried dependencies is a

possible further improvement but symbol management would

need to become parametric. During DAG construction, we

enable debug information and extract the location information

of each node in the source file (line and column in file), which

is used later to annotate the code.

DAG analysis. After generating the DAG of the computation,

we apply our static analysis to find a priority assignment as

described above. In principle, we can use this information

to instruct an affine operation to avoid fusing symbols in its

priority assignment. However, note that the identifiers of such

symbols are not known at static time. Thus, this approach

requires gathering the identifiers of prioritized symbols at

runtime and passing them to the affine operation where they are

prioritized. Gathering these symbols may introduce overheads

since they are created in different nodes (and thus stored

in different variables). To minimize this extra overhead, we

prioritize the symbols contained in only one variable for each

affine operation (i.e., for each node in a DAG) instead of

symbols spread across multiple variables. We use a heuristic to

select the variable to prioritize in a node s: from the priority

assignment, we inspect the prioritized symbols of s (i.e., π(s))
and select the one with the highest reuse profit. We choose the

variable of the node that generates this symbol as the one to

prioritize in s. At the end of this process, this step returns the

variables to prioritize for each node in the DAG.

Annotating and transforming the code. As a final step,

we identify the position of each node in the source code and

insert custom pragmas to instruct SafeGen on the variables to

prioritize in each computation. To this end, we search for the

nodes at the AST level using the location information extracted

earlier. The TAC format facilitates this process since each node

appears in a different line in the source code. At this point, the

process in Fig. 6 is finished. The resulting annotated code is

then processed by the following stages of SafeGen, where each

pragma is replaced by a function that prioritizes the symbols

of the given variable.

VII. EVALUATION

In this section, we evaluate the accuracy and performance

of SafeGen on a set of benchmarks when using the proposed

policies as well as the static analysis to prioritize variables. In

addition, we compare against prior work on libraries and the

IA-based compiler IGen for sound floating-point.

TABLE II
BENCHMARKS.

Label Description Base implementation

henon Henon map Manually implemented

sor Jacobi successive over-relaxation SciMark [36]

luf LU matrix factorization SciMark [36]

fgm Fast gradiant method FiOrdOs [37]

The key metric we consider is the trade-off between accuracy

and performance. Or more precisely, how many bits can be

certified for which slowdown compared to the original code.

Full AA without limit on the error symbols (Section II-B) will

always yield the highest accuracy but at prohibitive cost.

Benchmarks. It is known that AA can only improve over

IA for programs where cancellation of symbols can happen

(see Section II-B). Thus, we focus on such programs for the

evaluation. We use the benchmarks described in Table II,

which are known to yield pessimistic results with IA due

to the dependency problem. All are implemented in double

precision. The Henon map is an iterative algorithm defined as

xi+1 = 1 − ax2
i + yi and yi+1 = bxi. We use a = 1.05 and

b = 0.3 in the experiments as done in [38]. The sor and luf

benchmarks are taken from the benchmark suite SciMark [36]

for numerical computing and they were used in [30] to evaluate

AA: sor is a method for solving a system of linear equations,

and luf implements the LU matrix factorization. Finally, fgm

is an efficient implementation of the fast gradient method

autogenerated by FiOrdOs [37], which is commonly used as a

subroutine in Model Predictive Control, where soundness is

important. For all benchmarks, we use SafeGen to generate

multiple sound implementations varying the number of symbols,

policies, and precisions. The generation of each implementation

took less than a second for all considered benchmarks.

Experimental setup. We execute our benchmarks on an

Intel Xeon E-2176M CPU with Coffee Lake microarchitec-

ture running at 2.7 GHz, under Ubuntu 20.04 with Linux

kernel v4.15. All tests are compiled using gcc 9.3.0 with flags

-O3 -march=host -frounding-math. We measure performance

by repeating every measurement 30 times on random inputs

drawn uniformly in the range [0, 1] and taking the median of

the runtimes. The inputs are affine expressions with random

central values x0 and one symbol of length 1 ulp(x0), where

ulp(x0) is the space between x0 and the following floating-

point number. Intel Turbo Boost is disabled. All tests are run

with warm cache.

Accuracy metric. The exact result x of a computation (as if

computed using real arithmetic) is guaranteed to be inside the

range of the resulting affine expression â (soundness property).

We measure error as the base-2 logarithm of the number of

floating-point values between the exact result x and any floating-

point value inside its range, which is upper bounded by:

err(â) = log2 |{x ∈ F : a0 − r(â) ≤ x ≤ a0 + r(â)}| ,

73

2
5

2
6

2
7

2
8

2
9

2
10

0 10 20 30 40 50

Certified accuracy [bits]

Slowdown

2
8

2
10

2
12

2
14

20 25 30 35 40

Certified accuracy [bits]

Slowdown

2
8

2
10

2
12

2
14

0 10 20

Certified accuracy [bits]

Slowdown

2
6

2
8

2
10

2
12

2
14

26 28 30 32

Certified accuracy [bits]

Slowdown

(a) henon (b) sor (c) fgm (d) luf

Fig. 8. Certified accuracy and runtime of various configurations of SafeGen when increasing the maximal number of symbols k. Note that (b) and (d) do not
start at zero on the x-axis for better display.

where F is the set of floating-point values and r(â) is the

radius as defined in (2). This is the same metric used in [27],

[39], [40]. In addition, we define accuracy as the number of

certified bits in the result calculated as:

acc(â) = p− err(â),

where p is the number of mantissa bits in a given precision, e.g.,

p = 53 in double precision. Intuitively, the accuracy of an affine

expression â resulting from a computation, is the minimum

number of most-significant bits shared by the mantissa of

the exact result with any floating-point value contained in â

(assuming same exponent). In our experiments, when a result

consists of multiple values, we only consider the one with

the lowest accuracy, i.e., we consider worst-case errors. We

take the average across all runs. Note that the metric of error

that we use relates to the common notion of relative error

as explained next. Let y be any floating-point value inside

â and assume that x (the exact result) and y share the same

exponent in floating-point representation. The relative error is

upper-bounded by

∣∣∣∣
x− y

x

∣∣∣∣ < 2err(â)−p+1 = 2−acc(â)+1.

A. Accuracy and Performance of SafeGen

Plot navigation. Fig. 8 shows the results for certified

accuracy (acc) and runtime of various configurations of

SafeGen. The runtime is shown as slowdown factor compared

to the original unsound program. Each point shape in a

plot represents a different configuration of SafeGen varying

the symbol policies, precision, and prioritization. There are

many combinations, but several are inferior in performance as

explained in Section V, so we show only the most important.

We use input matrices of size 10× 10 and 20× 20 for sor and

luf respectively. Note that two plots do not start at zero on the

x-axis for better display.

TABLE III
ACCURACY AND RUNTIME OF DIFFERENT CONFIGURATIONS WITH k = 40.
ALL CONFIGURATIONS ARE NON-VECTORIZED AND WITHOUT PRIORITY.

Certified accuracy [bits] Speedup compared to ss

Bench. ss sm so ds ss sm so ds

henon 36.4 27.6 26.4 36.6 1 1.4 2.2 2.2

sor 33.9 29.3 20.1 31.6 1 5.9 13.0 13.2

fgm 22.1 15.3 6.91 19.1 1 5.5 11.2 10.5

luf 31.3 31.4 30.8 30.4 1 9.8 16.0 18.1

We use the notation f64a-wxyz to indicate a given con-

figuration in double precision, where w ∈ s,d specifies the

placement policy used (sorted or direct-mapped) and x ∈ s,m,o,r

specifies the fusion policy used (smallest, mean, oldest, or

random). Finally, y ∈ p,n indicates whether the configuration

prioritizes variables or not using our static analysis, and z ∈ v,n

whether the generated code is SIMD-vectorized or not. For

example, f64a-dspv means that the configuration uses direct-

mapped placement policy, shortest fusion policy, prioritization

of variables is enabled and the output code is SIMD-vectorized.

In addition, the configuration dda-dspn uses double-double

precision for the center points in the affine expressions.

Configurations with prioritization are shown in solid red,

and their counterparts without priority in solid blue. We use

white for the remaining combinations. For each configuration

we generate code varying the maximum number of symbols k

in the affine variables using k = 8, 12, . . . , 48. For clarity, we

ignore the last five points of dda-dspn which are outside the

shown plot area. Fig. 8 shows that the certified accuracy and

runtime vary significantly between configurations. The best

constitute the Pareto-front towards the bottom-right corner.

Placement and fusion policies. We first disregard prioriti-

zation (red markers). f64a-srnn (random fusion) has the lowest

accuracy and shows the importance of a suitable method to fuse

symbols. In many cases, f64-ssnn achieves the best accuracy

74

10
0

10
1

10
2

10
3

10
4

0 10 20 30 40

Certified accuracy [bits]

Slowdown

10
0

10
2

10
4

10
6

18 26 34 42

Certified accuracy [bits]

Slowdown

10
0

10
2

10
4

10
6

0 10 20 30 40

Certified accuracy [bits]

Slowdown

10
0

10
2

10
4

10
6

26 30 34 38

Certified accuracy [bits]

f64a-dspv

f64a-dspv-k

ceres-affine

yalaa-af0

yalaa-af1

IGen-f64

IGen-dd

Slowdown

(a) henon (b) sor (c) fgm (d) luf

Fig. 9. Certified accuracy and slowdown of SafeGen vs. sound libraries. Note that (b) and (d) do not start at zero on the x-axis for better display.

sor-48

sor-28

sor-8

luf-48

luf-8
0

10

20

30

40

10 30 50 70

size (n)

Certified accuracy [bits]

Fig. 10. Certified accuracy of f64a-dspv in sor and luf benchmarks when
increasing the size of the n× n input matrix. There are three series for each
benchmark: using k = 8 (blue), k = 24 (gray) and k = 8 (red).

for a fixed number k of symbols but is slow. Table III shows

k = 40 and the impact of direct-mapped placement (f64-dsnn):

an order of magnitude speed-up at only slight loss of accuracy.

Generally speaking, dsxx is the superior combination overall.

Vectorization. We achieve additional speedup by generating

SIMD-vectorized code, whose efficiency is due to the direct-

mapped placement: f64-dsnv is between 1.2 and 3 times faster

than f64-dsnn while achieving the same accuracy.

Effect of variable prioritization. Now we consider our

variable prioritization based on static analysis (Section VI)

and see that the corresponding red markers make up almost

the entire Pareto-optimal front in all cases. f64a-smpn is best

among all sorted-placement policies. f64a-dspv is almost always

Pareto-optimal and achieves usually 4.5–8 more bits of certified

accuracy than its counterpart f64a-dsnv for the same k at only

20–30% performance overhead. Only for luf the analysis did

not find a feasible prioritization and thus f64a-dspv = f64a-

dsnv. Finally, dda-dspn can further boost precision but at about

another four times slowdown.

Increasing the input size. Fig. 10 shows the certified

accuracy of f64a-dspv in the sor and luf benchmarks for

different sizes of the n× n input matrix. As can be seen, sor

scales well by maintaining roughly a constant accuracy when

n > 30. On the other hand, the accuracy in luf decreases till

no bit can be certified when n ≥ 60. In general, the depth

D of the computation DAG matters for scaling. For luf, the

computational depth is D = O(n) whereas sor has D = O(1).

B. Comparison with Prior Work

We now compare the accuracy and runtime of SafeGen

against prior work on sound floating-point.

Libraries. We compare SafeGen against the two AA libraries

Yalaa v0.92 [29] and Ceres [30]. Yalaa is implemented in C++

and offers the affine data types yalaa-af0 and yalaa-af1. The

former implements full AA (no limit k), and the latter fixes

k to the number of input variables and does not create new

symbols. Ceres is a Scala library for certifying numerical results,

which limits the number of symbols in variables and uses a

symbol fusion policy when this limit is exceeded. Finally, we

also compare SafeGen with the sound IA code generated by

IGen [27] in both double and double-double precision (IGen-

f64 and IGen-dd).

Experimental setup. We use the same experimental setup

as before for SafeGen, IGen, and Yalaa. For Ceres, we use the

OpenJDK 64-Bit Server JVM supporting Java 1.11, measuring

runtime with ScaleMeter [41]. To obtain fair results in the

JVM, we perform 100 warm-up runs on all tests to trigger the

JIT compiler. Fig. 9 shows the results. For SafeGen and Ceres,

we plot different points, again varying k = 8, 12, . . . , 48. For

Yalaa, we can only show yalaa-af0 and yalaa-af1 (shown in

black). In addition, we show the results of IGen when using

double and double-double precision (shown in white). Finally,

we introduce SafeGen (f64a-dspv-k) with a large enough k

such that no fusion of symbols occurs, thus simulating full AA.

The value of this large k is 800, 12K, 6K and 2.5K symbols

for henon, sor, fgm and luf respectively. The results will be

discussed next.

Comparison with affine libraries. SafeGen outperforms the

affine libraries and is in the Pareto-front of all benchmarks.

In particular, f64a-dspv is 30–70 times faster than ceres-affine

when using the same number of symbols k, while also being

up to 6 and 9 bits more accurate in sor and fgm, respectively.

Since yalaa-af0 does not limit the number of symbols, it is

always the most accurate but also the most expensive by far.

Since f64a-dspv-k simulates full AA, it achieves the same

accuracy as yalaa-af0 while being 3–6 times faster. Finally,

yalaa-af1 does not perform well since it does not create new

error symbols.

Comparison with IA. IA is in essence AA with k = 1.

Thus, it is inherently strictly inferior to AA when using the

75

same floating-point precision. We compare our approach with

IA code generated by IGen. For henon, IA loses all bits of

accuracy even using double-double, while f64a-dspv keeps

23 bits of precision when using only k = 8 symbols. For fgm

IGen only certifies 7 bits while f64a-dspv keeps 18 bits. For

sor and luf the gain is less for k = 8 but improves with larger

k. This improvement in accuracy over IA comes at the cost

of overhead. f64a-dspv with k = 8 is 10×–36× slower than

IGen-f64a and 2×–3.8× slower than IGen-dd. Compared to the

original (unsound) code, f64a-dspv is 48×–185× slower. Note

that the cost is rather high, but AA gives proven guarantees

while still preserving accuracy in situations where IA fails.

VIII. RELATED WORK

We review the existing work on worst-case error analysis,

libraries used for sound floating-point, and techniques to

improve accuracy and efficiency of affine arithmetic.

Automatic round-off error analysis. Most of the tools to

automatically estimate round-off errors are based on static

code analysis. These tools normally use abstract interpretation

such as interval or affine arithmetic to derive ranges of

variables as well as error bounds [14]–[16], [18]. In other

tools, round-off error analysis is approached as an optimization

problem. Real2Float [19] is based on semidefinite programming,

whereas FPTaylor uses symbolic Taylor expansions and global

optimization. Satire [21] uses bound optimization and improves

on the scalability of previous approaches. All of these consider

all possible inputs, and thus usually obtain very conservative

bounds, especially when dealing with conditional branches and

loops [16], [42]. In addition, most only support straight-line

programs with a few dozens of operations. Satire improves

scalability but is unable to handle loops and conditionals.

Other tools such as FPDebug [43] and CGRS [44] perform a

form of dynamic analysis to find inputs that cause high floating-

point errors. The former uses shadow variables in higher

precision and the latter uses a heuristic search method. However,

these tools do not provide guarantees on the errors bounds.

Libraries for sound floating-point. Most existing libraries

for sound floating-point use IA [23]–[25] and [27] provides

a compiler do so automatically. Although IA is efficient it is

also very pessimistic due to the dependency problem [22]. AA

overcomes this problem to some extent, but only few libraries

exist. Ceres [30] implements two special affine data types

AffineFloat and SmartFloat in Scala. The former is used to

enclose the true result of the computation whereas the latter

to determine upper bounds on the round-off error. In addition,

it uses a fusion policy to reduce the number of symbols after

a predefined threshold. Affine libraries implemented in C++

include Libaffa [45], aaflib [46] and Yalaa [29]. These libraries

implement full AA (no k) and are thus very expensive. Only

Yalaa gives some flexibility by optionally dedicating a special

error symbol to accumulate all new error terms but is inferior

to SafeGen-generated code as shown.

Currently, no AA library gives flexibility to define variables

with different capacities k in their number of symbols. This can

be beneficial for applications that present low reuse of symbols

in some parts of the computation (where AA with small k or

even IA may suffice) and high reuse in other parts. Assigning

a different limit on the number of symbols for each variable

may thus improve the overall performance while preserving

accuracy and is a possible direction for future work.

Affine arithmetic. In addition to the estimation of round-off

errors, AA is used in a range of applications to deal with

uncertainties. For example, the work in [47] uses static error

analysis based on AA to determine a suitable precision for

the implementation of DSP coders. Similarly, [48] uses AA

to optimize the bit-widths of fixed-point and floating-point

designs. In circuit design, it is used to determine worst-case

circuit tolerances [49], [50]. Most of the work on improving

the accuracy of AA focus on either improving the model, e.g.,

by preserving not only linear correlations but also higher order

symbols [51], or reducing the overapproximation of non-affine

operations such as multiplication [52], [53] and division [54].

All these methods make AA more expensive. To avoid the

explosion on the number of errors symbols, others suggest

fusion strategies for the symbols [30], [38]. In particular, the

strategy in [38] uses information of all active affine variables

to estimate the symbols that have less impact on the accuracy

based on a heuristic; thus, it may become expensive in practice.

Arbitrary precision libraries. Floating-point computations

can benefit from arbitrary precision libraries [55]–[57] for

applications that require high precision. Although useful, these

libraries do not provide any guarantee on the accuracy of the

result and thus are orthogonal to our work. Some interval

arithmetic libraries [26], [58] have been developed based on

these libraries to increase precision. The overhead of using

an arbitrary precision library such as MPFR [55] with 100

decimal digits is between two and three orders of magnitude

(see Table III in [55]), which is comparable to the overhead

introduced by SafeGen.

IX. CONCLUSIONS

Certified floating-point accuracy is a hard problem but can

be crucial for safety-critical applications. Most of the prior

work has focused on either static analysis or IA. Static analysis

is both difficult (and thus to date was mostly focused on

simple program expressions) and conservative since it considers

ranges of inputs. Rewriting a program using IA yields relatively

small performance overheads but also pessimistic bounds since

intervals can only grow, ignoring correlations.

Our main contribution is to make using the powerful AA

both automatic and more practical by significantly reducing

the performance overhead using a dedicated compiler. Two

main ideas underlie our approach. First, a direct placement

approach for error symbols combined with a suitable strategy

for fusing symbols, which in turn also enables efficient SIMD

vectorization. Second, a novel form of static analysis to identify

error symbols that should be protected from fusion. Thus our

automatic approach improves one to two orders of magnitude

over manually using prior libraries and offers a wide range

of Pareto-optimal trade-offs between certified accuracy and

performance.

76

ARTIFACT APPENDIX

A. Abstract

Our artifact provides the source code of SafeGen, bench-

marks to evaluate its performance and accuracy, and scripts

for reproducing main experiments. The artifact is in the form

of a virtual machine running Ubuntu 18.04 which provides all

required dependencies.

More specifically, our artifact consists of:

1) Source code of SafeGen compiler and library.

2) Source code of our benchmarks.

3) Scripts to set up and automate running the benchmarks

saving the results in CSV files.

4) Scripts to generate graphs from the CSV files.

The artifact also contains the source code of the LLVM Project

11.0 with custom modifications.

B. Artifact Check-List (Meta-Information)

• Program: SafeGen compiler with benchmarks.
• Compilation: We have included a script that builds SafeGen and

associated benchmarks using GCC 9.4.
• Binary: A modified version of Clang 11.0 is precompiled.
• Run-time environment: An Ubuntu-based virtual machine with

all necessary software dependencies.
• Hardware: x86 machine supporting AVX2.
• Execution: We provide scripts to set up, run and plot the

benchmarks in this paper. A more detailed description of how
to use them is included in README.

• Output: Running the scripts yields CSV files containing runtime
and accuracy numbers of the benchmarks. In addition, the pareto
plots in Fig. 8 are generated.

• How much disk space required (approximately)?: 20 GB to
support the virtual machine.

• How much time is needed to prepare workflow?: Immediately
available after importing the virtual machine in VirtualBox.

• How much time is needed to complete experiments?: Approx-
imately 1 hour to set up, compile and run all benchmarks.

• Publicly available?: Yes.
• Code license: BSD 3-Clause License

C. Description

How delivered. As a virtual machine available at:

https://doi.org/10.5281/zenodo.5711307.

Hardware dependencies. x86 machine with AVX2 support.

The results in this paper were obtained using an Intel Xeon

E-2176M CPU.

Software dependencies. All software dependencies have

been pre-installed in the provided virtual machine. We tested

the artifact in VirtualBox 6.1.0. Details on the dependencies

pre-installed in the virtual machine can be found in the README

distributed with the artifact.

D. Installation

Import and access the virtual machine in VirtualBox3. The

login credentials are the following:

username: cgo2022

password: safegen

3More information on importing virtual machine in VirtualBox can be
found at https://docs.oracle.com/cd/E26217_01/E26796/html/qs-
import-vm.html

Since all dependencies have been pre-installed, the system

should be ready once accessing the virtual machine.

E. Experiment Workflow

Once in the virtual machine, open the terminal and navigate

to the benchmarks directory:

$ cd artifact/benchmarks

.There is a script named run benchmarks.py which builds and

runs the benchmarks:

$ python3 run_benchmarks.py

.F. Evaluation and Expected Result

After the experiments finish running, the generated CSV files

with the results are saved in artifact/benchmarks/results

directory. There is one folder for each benchmark (e.g. henon,

sor, mpc and luf). The script also generates a pareto plot for

each benchmark. These plots will be saved as PDF files in

results/ plots.

G. Notes

We recommend disabling Intel Turbo Boost and Hyper

Threading technologies in the host machine to avoid the effects

of frequency scaling and resource sharing on the measurements.

These technologies can be disabled in the BIOS settings of the

machines that have BIOS firmware.

H. Methodology

Information regarding submission, reviewing and badging

methodology can be found at the following sites:

• http://cTuning.org/ae/submission-20190109.html

• http://cTuning.org/ae/reviewing-20190109.html

• https://www.acm.org/publications/policies/artifact-review-

badging

REFERENCES

[1] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine,
“Towards an industrial use of FLUCTUAT on safety-critical avionics
software,” in Formal Methods for Industrial Critical Systems (FMICS),
2009, pp. 53–69.

[2] F. Franchetti, T. M. Low, S. Mitsch, J. P. Mendoza, L. Gui, A. Phao-
sawasdi, D. Padua, S. Kar, J. M. F. Moura, M. Franusich, J. Johnson,
A. Platzer, and M. M. Veloso, “High-Assurance SPIRAL: End-to-end
guarantees for robot and car control,” IEEE Control Systems Magazine,
vol. 37, no. 2, pp. 82–103, 2017.

[3] T. A. Johansen, “Toward Dependable Embedded Model Predictive
Control,” IEEE Systems Journal, vol. 11, no. 2, pp. 1208–1219, 2017.

[4] I. McInerney, E. C. Kerrigan, and G. A. Constantinides, “Modeling
Round-off Error in the Fast Gradient Method for Predictive Control,” in
Proceedings IEEE Conference on Decision and Control (CDC), 2019,
pp. 4331–4336.

[5] P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints
among variables of a program,” in Proceedings Symposium on Principles

of Programming Languages (POPL), 1978, pp. 84–96.
[6] D. Cattaruzza, A. Abate, P. Schrammel, and D. Kroening, “Sound numer-

ical computations in abstract acceleration,” in Proceedings Numerical

Software Verification (NSV), 2017, pp. 38–60.
[7] L. Chen, A. Miné, and P. Cousot, “A sound floating-point polyhedra

abstract domain,” in Asian Symposium on Programming Languages and

Systems (APLAS), 2008, pp. 3–18.
[8] D. Monniaux, “The pitfalls of verifying floating-point computations,”

ACM Transactions Programming Languages and Systems (TOPLAS),
vol. 30, no. 3, 2008.

77

https://doi.org/10.5281/zenodo.5711307
https://docs.oracle.com/cd/E26217_01/E26796/html/qs-import-vm.html
https://docs.oracle.com/cd/E26217_01/E26796/html/qs-import-vm.html
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

[9] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev, “Fast and
effective robustness certification,” in Proceedings Proceedings of the

32nd International Conference on Neural Information Processing Systems

(NIPS), 2018, pp. 10 825–10 836.
[10] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An abstract domain for

certifying neural networks,” Proceedings of the ACM on Programming

Languages (PACMPL), vol. 3, 2019.
[11] F. Serre, C. Müller, G. Singh, M. Püschel, and M. Vechev, “Scaling

polyhedral neural network verification on GPUs,” in Proceedings

Proceedings Machine Learning and Systems (MLSys), 2021.
[12] K. Jia and M. Rinard, “Exploiting verified neural networks via floating

point numerical error,” CoRR, vol. abs/2003.03021, 2020.
[13] D. Zombori, B. Bánhelyi, T. Csendes, I. Megyeri, and M. Jelasity,

“Fooling a complete neural network verifier,” in Proceedings

International Conference on Learning Representations (ICLR), 2021.
[Online]. Available: https://openreview.net/forum?id=4IwieFS44l

[14] E. Goubault and S. Putot, “Static analysis of finite precision computations,”
in Verification, Model Checking, and Abstract Interpretation (VMCAI),
2011, pp. 232–247.

[15] M. Daumas and G. Melquiond, “Certification of bounds on expressions
involving rounded operators,” ACM Transactions on Mathematical

Software (TOMS), vol. 37, no. 1, 2010.
[16] E. Darulova and V. Kuncak, “Towards a compiler for reals,” ACM

Transactions on Programming Languages and Systems (TOPLAS), vol. 39,
no. 2, 2017.

[17] T. Ramananandro, P. Mountcastle, B. Meister, and R. Lethin, “A unified
coq framework for verifying c programs with floating-point computations,”
in Certified Programs and Proofs (CPP), 2016, pp. 15–26.

[18] L. Titolo, M. A. Feliú, M. Moscato, and C. A. Muñoz, “An abstract
interpretation framework for the round-off error analysis of floating-point
programs,” in Proceedings Verification, Model Checking, and Abstract

Interpretation (VMCAI), 2018, pp. 516–537.
[19] V. Magron, G. Constantinides, and A. Donaldson, “Certified roundoff

error bounds using semidefinite programming,” ACM Transactions on

Mathematical Software (TOMS), vol. 43, no. 4, 2017.
[20] A. Solovyev, M. S. Baranowski, I. Briggs, C. Jacobsen, Z. Rakamarić,

and G. Gopalakrishnan, “Rigorous estimation of floating-point round-
off errors with symbolic taylor expansions,” ACM Transactions on

Programming Languages and Systems (TOPLAS), vol. 41, no. 1, 2018.
[21] A. Das, I. Briggs, G. Gopalakrishnan, S. Krishnamoorthy, and

P. Panchekha, “Scalable yet rigorous floating-point error analysis,” in
Proceedings International Conference for High Performance Computing,

Networking, Storage and Analysis (SC), 2020, pp. 1–14.
[22] R. E. Moore, “Interval analysis,” Prentice-Hall, 1966.
[23] H. Brönnimann, G. Melquiond, and S. Pion, “The design of the Boost

interval arithmetic library,” Theoretical Computer Science, vol. 351, no. 1,
pp. 111–118, 2006.

[24] M. Lerch, G. Tischler, J. W. V. Gudenberg, W. Hofschuster, and
W. Krämer, “FILIB++, a Fast Interval Library Supporting Containment
Computations,” ACM Transactions on Mathematical Software (TOMS),
vol. 32, no. 2, pp. 299–324, 2006.

[25] F. Goualard, “Gaol 4.2.0: Not just another interval arithmetic library,”
https://sourceforge.net/projects/gaol, 2015.

[26] N. Revol and F. Rouillier, “Motivations for an arbitrary precision interval
arithmetic and the mpfi library,” Reliable Computing, vol. 11, no. 4, pp.
275–290, 2005.

[27] J. Rivera, F. Franchetti, and M. Püschel, “An Interval Compiler for Sound
Floating-Point Computations,” in Proceedings International Symposium

on Code Generation and Optimization (CGO), 2021, pp. 52–64.
[28] L. H. de Figueiredo and J. Stolfi, “Affine arithmetic: Concepts and

applications,” Numerical Algorithms, vol. 37, no. 1, pp. 147–158, 2004.
[29] S. Kiel, “Yalaa: Yet another library for affine arithmetic,” Reliable

Computing, vol. 16, pp. 114–129, 2012.
[30] E. Darulova and V. Kuncak, “Trustworthy numerical computation in

scala,” in Proceedings ACM International Conference on Object Oriented

Programming Systems Languages and Applications (OOPSLA), 2011,
pp. 325–344.

[31] J. Rivera, “IGen: A Compiler for Sound Floating-Point.” [Online].
Available: https://github.com/joaoriverd/IGen

[32] Clang. (2020) Clang libtooling. Available at https://clang.llvm.org/docs/
LibTooling.html, version 11.0.0.

[33] Y. Hida, S. Li, and D. Bailey, “Library for double-double and quad-
double arithmetic,” 2008, https://web.mit.edu/tabbott/Public/quaddouble-
debian/qd-2.3.4-old/docs/qd.pdf.

[34] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, pp.
1–70, 2008.

[35] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

[36] R. Pozo and B. R. Miller, “Java SciMark 2.0,” 2004. [Online]. Available:
http://math.nist.gov/scimark2/about.html

[37] F. Ullmann, “FiOrdOs: A Matlab Toolbox for C-Code Generation for
First Order Methods,” Master’s thesis, ETH Zurich, 2011.

[38] M. Kashiwagi, “An algorithm to reduce the number of dummy variables
in affine arithmetic,” Scientific Computing, Computer Arithmetic and

Verified Numerical Computations (SCAN), 2012.

[39] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock, “Automat-
ically improving accuracy for floating point expressions,” in Conference

on Programming Language Design and Implementation (PLDI), 2015,
pp. 1–11.

[40] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic optimization
of floating-point programs with tunable precision,” in Proceedings

Conference on Programming Language Design and Implementation

(PLDI), 2014, pp. 53–64.

[41] A. Prokopec, “ScalaMeter,” 2012. [Online]. Available: https://scalameter.
github.io

[42] E. Goubault and S. Putot, “Robustness analysis of finite precision
implementations,” in Asian Symposium on Programming Languages

and Systems (APLAS), 2013, pp. 50–57.

[43] F. Benz, A. Hildebrandt, and S. Hack, “A Dynamic Program Analysis
to Find Floating-Point Accuracy Problems,” in Proceedings Conference

on Programming Language Design and Implementation (PLDI), 2012,
pp. 453–462.

[44] W.-F. Chiang, G. Gopalakrishnan, Z. Rakamaric, and A. Solovyev, “Effi-
cient Search for Inputs Causing High Floating-Point Errors,” SIGPLAN

Not., vol. 49, no. 8, pp. 43–52, 2014.

[45] “Libaffa - C++ Affine Arithmetic Library for GNU/Linux,” 2004.
[Online]. Available: https://www.nongnu.org/libaffa/

[46] “aaflib - An Affine Arithmetic C++ Library,” 2010. [Online]. Available:
http://aaflib.sourceforge.net/

[47] C. F. Fang, R. A. Rutenbar, M. Püschel, and T. Chen, “Toward Efficient
Static Analysis of Finite-Precision Effects in DSP Applications via
Affine Arithmetic Modeling,” in Proceedings Annual Design Automation

Conference (DAC). Association for Computing Machinery, 2003, pp.
496–501.

[48] W. Osborne, R. Cheung, J. Coutinho, W. Luk, and O. Mencer, “Automatic
Accuracy-Guaranteed Bit-Width Optimization for Fixed and Floating-
Point Systems,” in Proceedings International Conference on Field

Programmable Logic and Applications (FPL), 2007, pp. 617–620.

[49] T. Ding, R. Trinchero, P. Manfredi, I. S. Stievano, and F. G. Canavero,
“How Affine Arithmetic Helps Beat Uncertainties in Electrical Systems,”
IEEE Circuits and Systems Magazine, vol. 15, no. 4, pp. 70–79, 2015.

[50] N. Femia and G. Spagnuolo, “True worst-case circuit tolerance analysis
using genetic algorithms and affine arithmetic,” IEEE Transactions on

Circuits and Systems I: Fundamental Theory and Applications, vol. 47,
no. 9, pp. 1285–1296, 2000.

[51] F. Messine and A. Touhami, “A General Reliable Quadratic Form: An
Extension of Affine Arithmetic,” Reliable Computing, vol. 12, no. 3, pp.
171–192, 2006.

[52] I. Skalna and M. Hladı́k, “A new algorithm for Chebyshev minimum-
error multiplication of reduced affine forms,” Numerical Algorithms,
vol. 76, no. 4, pp. 1131–1152, 2017.

[53] L. Zhang, Y. Zhang, and W. Zhou, “Tradeoff between Approximation
Accuracy and Complexity for Range Analysis using Affine Arithmetic,”
Journal of Signal Processing Systems, vol. 61, 2010.

[54] S. Miyajima and M. Kashiwagi, “A dividing method utilizing the best
multiplication in affine arithmetic,” IEICE Electronics Express, vol. 1,
no. 7, pp. 176–181, 2004.

[55] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A Multiple-Precision Binary Floating-Point Library with Correct
Rounding,” ACM Transaction on Mathematical Software, vol. 33, no. 2,
pp. 13–es, 2007.

[56] F. Bellard, “LibBF Library,” https://bellard.org/libbf/, 2020, [Online;
accessed 2-Dec-2021].

[57] B. Haible, “CLN - Class Library for Numbers,” https://bellard.org/libbf/,
[Online; accessed 2-Dec-2021].

[58] F. Johansson, “Arb: efficient arbitrary-precision midpoint-radius interval
arithmetic,” IEEE Transactions on Computers, vol. 66, pp. 1281–1292,
2017.

78

https://openreview.net/forum?id=4IwieFS44l
https://sourceforge.net/projects/gaol
https://github.com/joaoriverd/IGen
https://clang.llvm.org/docs/LibTooling.html
https://clang.llvm.org/docs/LibTooling.html
https://web.mit.edu/tabbott/Public/quaddouble-debian/qd-2.3.4-old/docs/qd.pdf
https://web.mit.edu/tabbott/Public/quaddouble-debian/qd-2.3.4-old/docs/qd.pdf
https://www.gurobi.com
http://math.nist.gov/scimark2/about.html
https://scalameter.github.io
https://scalameter.github.io
https://www.nongnu.org/libaffa/
http://aaflib.sourceforge.net/
https://bellard.org/libbf/
https://bellard.org/libbf/

	Introduction
	Background
	Interval Arithmetic (IA)
	Affine Arithmetic (AA)
	IGen Compiler

	SafeGen Overview
	Affine Arithmetic in SafeGen
	Affine Arithmetic Library
	Source-to-Source Transformations

	Policies to Handle Error Symbols
	Symbols Placement Policies
	Symbol Fusion Policies

	Static Analysis to Prioritize Symbols
	Max Reuse Problem
	ILP Formulation
	Code Transformations to Prioritize Variables

	Evaluation
	Accuracy and Performance of SafeGen
	Comparison with Prior Work

	Related Work
	Conclusions
	Abstract
	Artifact Check-List (Meta-Information)
	Description
	Installation
	Experiment Workflow
	Evaluation and Expected Result
	Notes
	Methodology

	References

